Swing door drive mechanism with fire protection rating

ETS 64-R

Mounting and operating instructions
Original

TABLE OF CONTENTS

1 GENERAL REMARKS 5
1.1 Target group 5
1.2 Where to keep these instructions 5
1.3 Adresses 5
1.4 Auxiliary tools and service performances6
2 SAFETY 7
2.1 Appropriate use 7
2.2 Safety notices 7
2.3 Safety regulations 7
2.3.1 Principles 7
2.3.2 Service 9
2.3.3 Safety devices 9
2.3.4 Malfunctions 9
2.3.5 Accessories/Spare parts 9
3 PRODUCT DESCRIPTION 10
3.1 General remarks 10
3.2 Standard application 11
3.3 Inverse application 12
3.4 Automatic closing sequence control 12
3.5 Rating plate 12
3.6 Technical data 13
3.7 Maximum wind-load capacity 14
4 MOUNTING 15
4.1 Preparation 15
4.2 Mounting versions 16
4.2.1 Rod assemblies narrow RS/RG 16
4.2.2 Rod assemblies stainless steel 17
4.3 General 18
4.4 Rod assemblies narrow RS/RG 20
4.4.1 Normal rods RS pushing function / Lintel mounting 20
4.4.2 Sliding rods RG pulling function / Lintel mounting 24
4.4.3 Sliding rods RG pushing function / Lintel mounting 27
4.5 Rod assemblies stainless steel 30
4.5.1 Normal rods pushing function / Lintel mounting 30
4.5.2 Sliding rods pulling function / Lintel mounting 32
4.5.3 Sliding rods pushing function / Lintel mounting 35
4.6 Adjusting the pre-stressing of the closing spring 38
4.7 Setting the forceful closing function 40
4.7.1 Forceful closing cushioning 40
4.7.2 Forceful closing range 41
4.8 Mechanical closing sequence regulator 42
5 ELECTRICAL CONNECTIONS 43
5.1 Power supply 43
5.2 Cable layout 45
5.2.1 Lintel mounting 45
5.3 Fire protection PCB 46
5.4 External elements 48
5.5 Motorized lock 49
6 COMMISSIONING 50
6.1 Low-Energy mode 52
6.2 Servo operation 52
6.3 Inverse application 53
6.4 Closing sequence control 54
6.5 Interlock operation 57
6.5.1 Standard interlock (IL Type Safety) 57
6.5.2 Hospital interlock (IL Type Hospital) 57
6.5.3 Netherland interlock (ILType NL) 57
6.6 Adhesive labels 59
6.6.1 Service sticker 59
6.6.2 Ü-sticker 59
6.6.3 Diagram sticker 59
6.6.4 Fire protection sticker 59
6.6.5 Rating plate 59
6.7 Mount the drive mechanism covering 60
7 CONTROL 61
7.1 Main switch 61
7.2 Program selector 61
7.3 Operating modes 62
7.4 Adjustings 62
7.4.1 Motional parameters (PARAMETER) 63
7.4.2 Configuration (CONFIG) 64
7.4.3 Installations with multiple door leaves (DOUBLE DOOR) 65
7.4.4 Menu navigation 66
8 SERVICE 70
8.1 Service for pedestrian doors 71
8.2 Fundamental checking 72
9 TROUBLESHOOTING 73
9.1 Malfunction with error-no 73
9.1.1 Drive mechanism 74
9.1.2 Operating 74
9.1.3 Safety elements 75
9.1.4 Feeding 75
9.1.5 System 75
9.1.6 Options 75
9.1.7 Closing sequence / Interlock function 75
9.2 Malfunction without error-no 76
9.3 Software update via USB 77
9.3.1 Preparation 77
9.3.2 Procedure 78
9.3.3. LED display on the control 78
9.3.4 Possible errors 78
10 SHUT-DOWN 79
11 DISPOSAL OF THE INSTALLATION 80
12 SPARE PARTS 81
13 OPTIONS 82
13.1 D-BEDIX 82
13.1.1 Keys 82
13.1.2 Symbols 82
13.1.3 Operating modes 83
13.1.4 Display of the door position 83
13.1.5 Menu level 84
13.1.6 Setting examples 85
13.1.7 Error display 86
13.2 KOMBI-D-BEDIX 87
13.3 Open position stop piece integrated in the drive mechanism 88
13.4 Connection plate for wooden door leaf (normal rods) 89
13.5 Continuous covering 90
13.6 Optional PCBs 91
13.6.1 Relay PCB 91
13.6.2 Radio PCB 92
13.7 LZR-FLATSCAN 93
14 APPENDIX 94
Wiring diagram E4-0141-713_ECO
Wiring diagram Fire protection PCB E4-0141-714 ECO
Wiring diagram Flatscan LZR E4-0142-149_ECO

1 GENERAL REMARKS

The present instructions contains all instructions for mounting, commissioning, operation, service (maintenance/checking) as well as troubleshooting. It is the basis guaranteeing a faultless and safe operation of the installation and must be completely read and understood before starting the work.

The following basic documents are associated with this installation:

- Mounting and operating instructions

0548-990/62

- Operator manual

0548-991/62

- Control booklet

0548-991/72
onto the installation by the operator
0548-991/72 onto the installation

1.1 Target group

All the work described in the present instructions must only be carried out by experts!

Experts are persons who, based on their professional training and experience, have sufficient knowledge in the field of powered windows, doors and gates. They are sufficiently familiar with the relevant federal regulations for work protection and accident prevention, with the guidelines and generally recognized rules applicable for this field of technology which enables them to evaluate if powered windows, doors and gates can be safely operated.

Only the trained experts of the manufacturer or the supplier are counted among these persons.

1.2 Where to keep these instructions

The present instructions have to be kept close to the installation, together with the control booklet!

1.3 Adresses

Distribution agent/
After-sales service

Distribution

ECO Schulte GmbH \& Co. KG
Iserlohner Landstrasse 89
D-58706 Menden
Tel. $\quad+492373$ / 92 76-0
Fax +49 $2373 / 92$ 76-40
www.eco-schulte.de

1.4 Auxiliary tools and service performances

The auxiliary tools and service performances listed hereafter are available, depending on the respective situation and authorization (please ask your distribution agent):

- Company portrait
- Homepage
- News
- Info-News via E-mail
- Product brochures
- Product presentation (PowerPoint)
- Submission texts
- Reference list
- Test/homologation certificates
- CAD data
- Application sheets
- Plans of installations and cutouts
- Training courses
- Spare parts
- Maintenance contracts
- Around-the-clock service (not available in all the countries)

2 SAFETY

2.1 Appropriate use

The swing door drive mechanism with fire protection rating ETS 64-R has been exclusively designed for operating swing doors with fire protection rating. Any other use beyond these application limits is deemed inappropriate and inadmissible! In the event of an inappropriate use of this system, the safety of the user may be jeopardized and/or the installation be damaged. The manufacturer declines all responsibility for these injuries/damages!

2.2 Safety notices

The present instructions uses the following symbols and notes in order to point out certain residual dangers:

Warning:

Involving danger to life and limb.

Attention:
A situation where material could be damaged or the function impaired.
Note:
Hints which facilitate the work.

2.3 Safety regulations

2.3.1 Principles

- According to standard EN 16005/DIN 18650 describing the safety-related requirements for automatic door systems, a risk evaluation is to be carried out (in consideration of the groups of door users and the local situation). This is the basis for the choice of the different protecting measures. The risk evaluation has to be carried out already during the planning stage to guarantee that the automatic door system can be safely installed and operated.
- When configuring the installation, it is essential to make sure that the locally applicable regulations with regard to the closing edges are complied with, in order to avoid crushing and shearing points. It is particularly important to make sure that the door leaves do not have any sharp edges. The secondary closing edges must be designed by customers in such a fashion as to eliminate any dangerous crushing and shearing points.

- In order not to create any dangerous squeezing and shearing points, no structural modification must be made within the door surroundings, without prior authorization from ECO Schulte GmbH \& Co. KG. Furthermore, it is important that no objects (such as furniture, pallets, etc.) be placed in the vicinity of the door.
- The door leaves and their fillings must be manufactured according to the applicable standards (e.g. EN 16005). For the door leaf fillings, brake-proof material respectively safety glass shall be used. Transparents door leaves (or their surfaces) must be clearly recognizable, e.g. by means of a permanent marking or dyed materials.
- The application limits must be observed.
- The choice of fastening elements depends on the construction base.
- It is imperative for the customer to install a door leaf stop piece! The latter limits the opening motion of the door leaf and prevents it's being damaged in the manual operating mode. As an option, an open position stop piece can be integrated into the drive mechanism itself.
- Door sills or other protruding elements of the door system are to be identified by warning stickers or another appropriate marking means.
- In its assembled state, the installation must answer all the safety requirements specified by the machinery directive.
- The swing door drive mechanism with fire protection rating ETS 64-R may only be installed and operated in dry rooms. If this condition cannot be fulfilled, the customer must provide sufficient protection from moisture.
- The swing door drive mechanism with fire protection rating ETS 64-R must not be mounted within locations presenting explosion hazards. The presence of flammable gases or smoke represents a considerable safety hazard.
- All further interventions on and modifications of the installation that are not described in the present instructions are forbidden!
- Wrapping materials (such as plastic foil, polystyrene foam, strings,) represent a source of danger for children and must therefore be kept out of reach of the latter.
- The installation has been calculated, designed and manufactured on the basis of the latest state-of-the-art technology and the generally recognized safety-relevant rules and regulations. It may only be operated if it is in perfect condition, taking into account the specifications of the present instructions. Any use beyond the defined application limits is inadmissible!
- The installation is to be operated and maintained in such condition that the safety is guaranteed at all times. An integral part of this condition is the appropriate use, the compliance with the operating conditions prescribed by the manufacturer, as well as the regular service (maintenance/checking).
- The installation's conformity with the machinery directive must be confirmed.

2.3.2 Service

In order to guarantee the safety of the users at all times, the installation must be checked with regard to its safe condition before the first commissioning and during normal operation, at least once a year, by a expert. The correct maintenance/checking must be confirmed by entering the date and signature into the control booklet
In addition, fire protection installations need to be checked once a year by an authorized specialist. The correct checking must be confirmed by entering the date and signature to the maintenance control booklet for fixing devices.

2.3.3 Safety devices

It is inadmissible to bypass, shunt or disable the safety devices. Any defective safety devices may not be disconnected in order to be able to continue the operation of the installation.

2.3.4 Malfunctions

If any malfunctions occur which might be detrimental to the safety of the users, the installation must be immediately taken out of operation. It may only be taken back into operation after the malfunction has been repaired and all danger eliminated.

2.3.5 Accessories/Spare parts

A safe and reliable function of the installation can only be guaranteed if it is operated with the original ECO Schulte GmbH \& Co. KG accessories/spare parts. ECO Schulte GmbH \& Co. KG declines all responsibility for damages resulting from unauthorized modifications of the installation or from the use of foreign accessories/spare parts.

3 PRODUCT DESCRIPTION

3.1 General remarks

The swing door drive mechanism with fire protection rating ETS 64-R resp. ETS 64-R GSd (special gear for sliding rods pushing function) opens and closes the door leaf via a rod assembly (is not shown in the illustration). The fire protection drive mechanism is implemented by means of a fireprotection PCB.

Rods	Normal rods	Sliding rods pulling function	Sliding rods pushing function
ETS 64-R	\checkmark	\checkmark	-
ETS 64-R GSd	-	-	$\checkmark *$

3.2 Standard application

During normal operation, the opening and closing movements of the door leaf are motorized. The automatically opening is performed via opening elements. The automatically closing starts as soon as the programmed hold-open time has expired.

Function in the event of a fire alarm/a mains failure
The door leaf is closed from any position by means of spring power. The motor attenuation ensures a controlled closing.

3.3 Inverse application

The swing door drive mechanism ETS 64-R is also appropriate for inversed operation. This particular function can be separately programmed for each drive mechanism. The inverse application is suitable for smoke extraction from buildings (RWA = smoke and heat exhaust vent solution) as well as for escape and rescue ways. In the event of a power failure or a RWA, this functionality ensures that the door leaf is reliably opened.

During normal operation, the opening and closing movements of the door leaf are motorized. The automatically opening is performed via opening elements. The automatically closing starts as soon as the programmed hold-open time has expired.

Function in the event of a smoke alarm/a mains failure

The door leaf is opened from any position by means of spring power (unless it has not been locked). The motor attenuation ensures a controlled opening. An emergency power supply system is therefore not necessary.

Attention:

The inverse function (spring-powered opening) must not be used on hold-open devices or in fireprotection sections, as this function is contrary to the "self-closing" property (which is required by the standards)!

3.4 Automatic closing sequence control

For 2 leaves installations, two separate ETS 64-R swing door drive mechanisms with fire protection rating are used, which are connected via the CAN bus system. In addition, fire protection installations require the installation of the mechanical closing sequence regulator ECO SRI.

3.5 Rating plate

The rating plate (including EC identification) can be found on the direct current motor (below the drive mechanism covering).

3.6 Technical data

Drive mechanism	Standard
	GSd (special gear for sliding rods pushing function)
Power transmission	Normal rods
	Sliding rods
Dimensions drive mechanism	Height 95 mm
	Width 690 mm
	Depth 120 mm
Weight drive mechanism	$10,5 \mathrm{~kg}$
Ambient temperature	$-15 . . .+50^{\circ} \mathrm{C}$
May only be used in dry rooms	max. relative humidity 85%
Protection type	IP 40 (IP 42*)
Operating voltage	230 VAC (+10/-15 \%), $50 \mathrm{~Hz}, 10 / 13$ A
Power consumption drive mechanism	max. 560 W
Motor power rating	100 W
Power supply external comsumer	24 VDC ($\pm 10 \%$), 2 A
Torque output shaft	80 Nm permanent
	240 Nm max.
Distance Door hinge - Output shaft	all 280 mm
Lintel depth	Normal rods pushing function $0 . . .240 \mathrm{~mm}$
	Slid. rods pulling func. $\quad-30 /+70(+190) \mathrm{mm}$
	Slid. rods push. funct. $\quad-30 /+60(+190) \mathrm{mm}$
	(DIBt tested -30/+30 mm)
	Normal rods RS pushing funct. $0 . . .240 \mathrm{~mm}$
	Slid. rods RG pulling function $-30 /+110 \mathrm{~mm}$
	Slid. rods RG push. function $-30 /+40 \mathrm{~mm}$
	(DIBt tested -30/+30 mm)
Door opening angle	max. 105°
Weight of door leaf	max. 250 kg
Width of door leaf	EN 3...6 (851...1'400 mm)
Opening speed	2,4... 20 s adjustable (max. $40^{\circ} / \mathrm{s}$)
Closing speed	2,4... 20 s adjustable (max. $40^{\circ} / \mathrm{s}$)
Foreceful closing range (without mains power)	5... 15° stepless adjustable (mechanical)
Forceful closing cushioning (without mains power)	stepless adjustable (adjusting trimmer)
Hold-open time	0... 60 s
Hold-open time Night	0... 180 s

* For obtaining the protection type IP 42, the drive mechanism covering must be sealed all around!

3.7 Maximum wind-load capacity

Sliding rods pushing function (lintel mounting) Drive mechanism GSd

Sliding rods pulling function (lintel mounting)

4 MOUNTING

4.1 Preparation

Attention:
Standard + inverse application
It is imperative for the customer to install a door leaf stop piece!
This door leaf stop piece prevents the door leaf/drive mechanism from being damaged in the manual operating mode, in case of misuse or vandalism.
As an option, an open position stop piece can be integrated into the drive mechanism itself, but this stop piece does not offer this protective function.

Attention:

Check the free running movement of the door leaf. Should it fail to move smoothly and silently, or if it is out of balance (i. e. it opens or closes by itself), these problems must be eliminated first!

Motor connector plug

Attention:

In order to ensure the cushioning function, the correct position (X or Y) of the motor connector plug (D) must be checked. This can be determined on the basis of the following chart. In addition, the correct position of the motor connector plug (for each available rod and assembly version) is shown in chapter 4.2.

Position Motor connector plug		Position Drive mechanism	Application		
		Standard	Invers		
Lintel mounting	pushing function		opposite side of hinge	Y	X
Lintel mounting	pulling function	opposite side of hinge	X	Y	

1. Loosen the two screws (A).
2. Pull the control (B) out from under the gearbox housing (C).
3. Re-connect the motor connector plug (D).
4. Remount the control unit (B).

4.2 Mounting versions

4.2.1 Rod assemblies narrow RS/RG

DIN left	DIN right

4.2.2 Rod assemblies stainless steel

4.3 General

STOP
Warning:
The fastening bases must provide sufficient solidity. If necessary they have to be reinforced by the appropriate means.

Attention:
The maximum admissible undulation of the fastening base is 1 mm .
For the fire safety version, the mounting plate 0548-358 respectively 0548-360 Mod must imperatively be mounted!
The mounting measures according to chapter 4 must be verified and complied with!

0548-360 Mod

The mounting plate 0548-360 can be used in cases where an existing FDC-B drive mechanism needs to be replaced by an ETS 64-R drive mechanism and where the existing fastening holes of the FDC-B-mounting plate have to be reused.

STOP Warning:
The drive mechanism must be fastened without torsion and perpendicularly, using all the six fixing holes! Tighten all the six M6 fixing screws (A) with a torque of $\mathbf{1 0} \mathbf{N m}$!

Note:
Depending on the assembly situation of the drive mechanism, it may be advisable to install the program selector on the opposite side (in order to guarantee an optimal operating facility). Should this be required, the work must be carried out according to chapter "Electrical connections".

Note:
In cases where it is planned to integrate an open position stop piece into the drive mechanism (option), this stop piece must be mounted prior to the rod assembly (see instructions for option 0548-992/02 resp. 0548-992/52).
\square Note:
In case FLATSCANs are planned, they must be mounted according to chapter 13.8.

4.4 Rod assemblies narrow RS/RG

4.4.1 Normal rods RS pushing function / Lintel mounting

Material:

1	Drive mechanism	$0548-032$	Covering aluminium
	Drive mechanism	$0548-033$	Covering inox
	incl. fixing set	$0548-107$	
1	Mounting plate	$0548-358$	resp. 0548-360 MOD
1	Normal rods	$0548-163 / 01$	

Procedure:

1. Mark out and drill the fastening holes on the lintel and the door leaf.
2. Mount the mounting plate.
3. If existing:

Sub-assemble the drive-internal open position stop piece, integrated in the drive mechanism (see Option instructions 0548-992/02).
4. Mount the drive mechanism.
with mounting plate

Options	Axle extension (mm)	$*$ $(\mathrm{~mm})$	$* *$ $(\mathrm{~mm})$
Standard	0	3	21
$0548-190 / 01$	+12	$3 . .15$	33
$0548-191 / 01$	+20	$3 \ldots 23$	41
$0548-192 / 01$	+30	$3 \ldots 33$	51

Drive mechanism standard

5. Close the door leaf
6. Separate the rotating arm (C) from the rod arm (B) by loosen the screw (E).
7. Fasten the rod arm (B) by means of the door connection angle (A) onto the door leaf.
For metric screws $=$ Tightening moment $10 \mathbf{N m}$.
8. Position the rotating arm (C) perpendicularly with regard to the door leaf and screw it down in this position \Rightarrow Tightening moment $\mathbf{2 5} \mathbf{~ N m}$.
9. Slightly loosen the screws (D) and the rotating arm (C), fasten them by means of the screw (E) to the rod $\operatorname{arm}(B) \Rightarrow$ Tightening moment 5 Nm .
Attention:
Adjust the rods to the required length. Choose the largest possible distance between both screws (D).
10. Prestress the rotating arm (C) until the rod arm (B) forms a right angle with the door leaf. Fasten the rod arm (B) by means of the screws (D) \Rightarrow Tightening moment 9 Nm .
\Rightarrow forward to chapter 4.6

Inverse application

5. Separate the rotating arm (C) from the rod arm (B) by loosen the screw (E).
6. Fasten the rod arm (B) by means of the door connection angle (A) onto the door leaf.
7. Completely open the door leaf (max. 110°).
8. Position the rotating arm (C) perpendicularly with regard to the door lintel (direction open position) and screw it down in this position \Rightarrow Tightening moment 25 Nm .
9. Slightly loosen the screws (D) and the rotating arm (C), fasten them by means of the screw (E) to the rod $\operatorname{arm}(B) \Rightarrow$ Tightening moment 5 Nm .
Attention:
Adjust the rods to the required length. Choose the largest possible distance between both screws (D).
10. Close the door leaf.
11. Prestress the rotating arm (C) until the rod arm (B) forms a right angle with the door leaf. Fasten the rod arm (B) by means of the screws (D) \Rightarrow Tightening moment 9 Nm .
\Rightarrow forward to page 23

Inverse application

12. Let the door leaf be opened by spring power
13. Using a screwdriver, carefully prize the service cover (C) out of the gearbox housing
14. By means of a socket wrench $1,5 \mathrm{~mm}$, slightly loosen the locking screw (B) and leave the socket wrench inserted in the locking screw (B).
15. Close the door leaf.
16. Carefully turn the cam disk (A) to the left or to the right until the locking screw (B) is located at the highest point and the socket wrench is in a vertical/ perpendicular position.
Tighten the locking screw (B)
17. Snap the service cover (C) into the gearbox housing
18. Mount the open position stop piece approx. 5° before the door leaf reaches the maximum open position. If existing:
Setting of the open-position stop piece, integrated in the drive mechanism (see Option instructions 0548992/02)
\Rightarrow forward to chapter 4.6

4.4.2 Sliding rods RG pulling function / Lintel mounting

Material:

1	Drive mechanism	$0548-032$	Covering aluminium
	Drive mechanism	$0548-033$	Covering inox
	incl. fixing set	$0548-107$	
1	Mounting plate	$0548-358$	resp. 0548-360 MOD
1	Sliding rods	$0548-164 / 01$	650 mm incl. sliding bolts $18 / 46 \mathrm{~mm}$

Procedure:

1. Mark out and drill the fastening holes on the lintel and the door leaf.

Note:
The illustration shows a 46 mm sliding bolt. Depending on the situation, this bolt can be replaced by the version 18 mm . This will change the respective dimensions by minus 28 mm .
2. Mount the mounting plate.
3. First loosen the screw (G) of the glider (E), then the bolt (F) of the rotating arm (D).
4. Depending on the situation, select the short 18 mm or long 46 mm bolt (F) and fasten it to the rotating arm (D) by means of screw locking adhesive Loctite $243 \Rightarrow$ Tightening moment 10 Nm.
5. Push the glider (E) over the bolt (F) and fasten it by means of screw (G) \Rightarrow Tightening moment 5 Nm .

Attention:
When tightening the screw (G), the bolt (F) must not come loose!

with mounting plate

DIBt checked	Lintel depth (mm)	Min. width door leaf without/with FLATSCAN (mm)	Max. door leaf opening angle (${ }^{\circ}$)	A without/ with FLATSCAN (mm)	Options	Axle extension (mm)	46 mm Sliding bolt (mm)	46 mm Sliding bolt (mm)	18 mm Sliding bolt (mm)	18 mm Sliding bolt (mm)
\checkmark	-30...+20	740 / 840	105	89 / 189	Standard	0	19... 44	52	16	24
\checkmark	21... 30	750 / 840	105	99/189	0548-190/01	+12	31... 56	64	28	36
-	31... 40	750 / 840	105	99 / 189	0548-191/01	+20	39... 64	72	36	44
-	41... 70	750 / 840	100	99 / 189	0548-192/01	+30	49... 74	82	46	54

DIN left = as shown DIN right = mirror-inverted

Lintel depth

Drive mechanism standard
6. Close the door leaf.
7. Prior to the installation of the drive unit: Screw down the lever arm (D) on the drive unit \Rightarrow Tightening moment 25 Nm

Attention:
The pre-stressing of the lever arm (D) depends on the existing lintel depth.
Example: Lintel depth 0 mm , pre-stressing of the lever $\operatorname{arm}(D) \approx 22,5^{\circ}$ (1 grid increment of the output shaft $=15^{\circ}$).

Note:
To facilitate the installation, the closing spring (H) can be completely released by means of the setting screw (I).
8. While mounting the drive unit, push the lever arm (D) back by the pre-stressing angle of 20°.
9. Slide the open position stop piece (B) into the sliding rail (C).
10. Slide the sliding rail (C) over the glider (E) and bolt it onto the door leaf.
11. Screw down the open position stop piece (B) approx. 5° before the door leaf reaches the maximum open position.
12. Insert the covering caps (A) on both sides
\Rightarrow forward to chapter 4.6

Inverse application

6. Mount the drive mechanism.
7. Open the door leaf (max. 115°).
8. Slide the open position stop piece (B) into the sliding rail (C).
9. Slide the sliding rail (C) over the glider (E) and bolt it onto the door leaf.
10. At the complete door opening (max. 115°):

Screw down the lever arm (D) on the drive unit \Rightarrow Tightening moment $\mathbf{2 5} \mathbf{N m}$.
11. Screw down the open position stop piece (B) approx. 5° before the door leaf reaches the maximum open position.
12. Insert the covering caps (A) on both sides.
\Rightarrow back to page 23

Attention:
Check the motional sequence of the door leaf: The rods must not touch! If the glider (E) makes screeching noises, it needs to be lubricated wih a little WD40.

4.4.3 Sliding rods RG pushing function / Lintel mounting

Material

1	Drive mechanism GSd	$0548-034$	Covering aluminium
	Drive mechanism GSd	$0548-035$	Covering inox
	incl. fixing set	$0548-107$	
1	Mounting plate	$0548-358$	resp. 0548-360 MOD
1	Sliding rods	$0548-164 / 01$	650 mm incl. sliding bolts 18/46 mm

Procedure:

1. Mark out and drill the fastening holes on the lintel and the door leaf.

Note:
The illustration shows the 18 mm sliding bolt. Depending on the situation, this bolt can be replaced by the version 46 mm . This will change the respective dimensions by plus 28 mm .
2. Mount the mounting plate.
3. First loosen the screw (G) of the glider (E), then the bolt (F) of the rotating arm (D).
4. Depending on the situation, select the short 18 mm or long 46 mm bolt (F) and fasten it to the rotating arm (D) by means of screw locking adhesive Loctite $243 \Rightarrow$ Tightening moment 10 Nm.
5. Push the glider (E) over the bolt (F) and fasten it by means of screw (G) \Rightarrow Tightening moment 5 Nm .

Attention

When tightening the screw (G), the bolt (F) must not come loose!
6. Mount the drive mechanism.

with mounting plate

DIBt che- cked	Lintel depth (mm)	Min. width door leaf (mm)	Max. door leaf opening angle $\left({ }^{\circ}\right)$	A
\checkmark	$-30 \ldots 0$	740	105	89
\checkmark	$1 \ldots 10$	730	105	79
\checkmark	$11 \ldots 20$	720	100	79
\checkmark	$21 \ldots 30$	720	95	79
-	$31 \ldots 40$	720	95	79

Options	Axle ex- tension	$*$	$* *$ 18 mm Sliding bolt (mm)	$* *$ 46 mm Sliding bolt (mm)
Standard	0	3	25	53
0548-190/01	+12	$3 \ldots 15$	37	65
0548-191/01	+20	$3 \ldots 23$	45	73
$0548-192 / 01$	+30	$3 \ldots .33$	55	83

DIN right = as shown DIN left = mirror-inverted

Lintel depth

Drive mechanism standard
7. Close the door leaf
8. Screw down the lever arm (D) on the drive unit \Rightarrow Tightening moment 25 Nm.

Attention:
The pre-stressing of the lever arm (D) depends on the existing lintel depth.
Example: Lintel depth 0 mm , pre-stressing of the lever $\operatorname{arm}(\mathrm{D}) \approx 7,5^{\circ}$ (1 grid increment of the output shaft $=15^{\circ}$).
9. Slide the open position stop piece (B) into the sliding rail (C).
10. Slide the sliding rail (C) over the glider (E) and bolt it onto the door leaf.
11. Screw down the open position stop piece (B) approx. 5° before the door leaf reaches the maximum open position.
12. Insert the covering caps (A) on both sides.
\Rightarrow forward to chapter 4.6

Inverse application

7. Open the door leaf (max. 115°).
8. Slide the open position stop piece (B) into the sliding rail (C).
9. Slide the sliding rail (C) over the glider (E) and bolt it into the door leaf.
10. At the complete door opening (max. 115°):

Screw down the lever arm (D) on the drive unit \Rightarrow Tightening moment 25 Nm.
11. Screw down the open position stop piece (B) approx. 5° before the door leaf reaches the maximum open position.
12. Insert the covering caps (A) on both sides.
\Rightarrow back to page 23

Attention

Check the motional sequence of the door leaf: The rods must not touch! If the glider (E) makes screeching noises, it needs to be lubricated wih a little WD40.

4.5 Rod assemblies stainless steel

4.5.1 Normal rods pushing function / Lintel mounting

Material:

1	Drive mechanism	$0548-032$	Covering aluminium
	Drive mechanism	$0548-033$	Covering inox
	incl. fixing set	$0548-107$	
1	Mounting plate	$0548-358$	resp. 0548-360 MOD
1	Normal rods	$0548-104$	
	Normal rods KTL	$0548-104 / 01$	

Procedure:

1. Mark out and drill the fastening holes on the lintel and the door leaf.
2. Mount the mounting plate.
3. If existing:

Sub-assemble the drive-internal open position stop piece, integrated in the drive mechanism (see Option instructions 0548-992/02).
4. Mount the drive mechanism.

Drive mechanism standard

5. Close the door leaf
6. Separate the rotating arm (D) from the rod arm (B) by dismounting the ball and socket joint (E).
7. Fasten the rod arm (B) by means of the door connection angle (A) onto the door leaf.
8. Position the rotating arm (D) including the clamping piece (C) perpendicularly with regard to the door leaf and screw the rotating arm (D) down in this position \Rightarrow Tightening moment 25 Nm .
9. Slightly loosen the screw (F) of the rod arm (B) and snap in the ball and socket joint (E) which connects the rotating arm (D) with the rod arm (B).
10. Prestress the rotating arm (D) until the rod arm (B) forms a right angle with the door leaf. Fasten the rod arm (B) by means of the screw (F) \Rightarrow Tightening moment $\mathbf{1 0} \mathbf{N m}$.
11. Tighten all the screws.
12. Mount the open position stop piece approx. 5° before the door leaf reaches the maximum open position. If existing:
Setting of the open-position stop piece, integrated in the drive mechanism (see Option instructions 0548992/02).
\Rightarrow forward to chapter 4.6

Inverse application

5. Separate the rotating arm (D) from the rod arm (B) by dismounting the ball and socket joint (E)
6. Fasten the rod arm (B) by means of the door connection angle (A) onto the door leaf.
7. Completely open the door leaf (max. 110°).
8. Position the rotating arm (D) including the clamping piece (C) perpendicularly with regard to the door lintel (direction open position) and screw the rotating arm (D) down in this position \Rightarrow Tightening moment 25 Nm.
9. Slightly loosen the screw (F) of the rod arm (B) and snap in the ball and socket joint (E) which connects the rotating arm (D) with the rod arm (B).
10. Close the door leaf.
11. Position the rod arm (B) perpendicularly with regard to the door leaf. Fasten the rod arm (B) by means of the screw (F) \Rightarrow Tightening moment $\mathbf{1 0} \mathbf{N m}$.
12. Tighten all the screws.
\Rightarrow back to page 23

Attention:

Check the motional sequence of the door leaf: The rods must not touch. If the rod arm (B) juts out too much, it can be shortened if necessary.

4.5.2 Sliding rods pulling function / Lintel mounting

Material:

1	Drive mechanism	$0548-032$	Covering aluminium
	Drive mechanism	$0548-033$	Covering inox
	incl. fixing set	$0548-107$	
1	Mounting plate	$0548-358$	resp. $0548-360$ MOD
1	Sliding rods	$0548-134$	620 mm incl. sliding bolts $14 / 38 \mathrm{~mm}$
	Sliding rods KTL	$0548-105 / 01$	620 mm incl. sliding bolts $14 / 38 \mathrm{~mm}$

Procedure:

1. Mark out and drill the fastening holes on the lintel and the door leaf.
2. Mount the mounting plate.
3. If existing: Sub-assemble the drive-internal open position stop piece, integrated in the drive mechanism (see Option instructions 0548-992/02).
$\square \int$ Note:
The illustration shows a 38 mm sliding bolt. Depending on the situation, this bolt can be replaced by the version 14 mm . This will change the respective dimensions by minus 24 mm .

Options		$*$	$* *$
$0548-114$	Clamping piece standard	$44 \ldots 66$	79
$0548-124$	Clamping piece -13 mm	$31 \ldots 53$	60
$0548-125$	Clamping piece +20 mm	$64 \ldots 86$	99
$0548-126$	Clamping piece +50 mm	$94 \ldots 116$	129

Drive mechanism standard
4. Close the door leaf.
5. Install the mounting profile (E) on the door leaf.
6. Prior to the installation of the drive mechanism: screw down the rotating arm (B) on the drive mechanism (with a 15° offset $=1$ grid increment of the output shaft) \Rightarrow Tightening moment 25 Nm.
Note:
To facilitate the installation, the closing spring (H) can be completely released by means of the setting screw (I).
7. While mounting the drive mechanism, push the rotating arm (B) back by the pre-stressing angle of 15°.
8. Push the guide profile (G) over the glider (C) and hook it into the mounting profile (E).
9. On both sides insert and screw down the expansion element (F) with $\mathbf{1 , 5} \mathrm{Nm}$.
10. Snap in the covering caps (D) on both sides.
11. Mount the open position stop piece approx. 5° before the door leaf reaches the maximum open position. If existing:
Setting of the open-position stop piece, integrated in the drive mechanism (see Option instructions 0548992/02).
\Rightarrow forward to chapter 4.6

Inverse application

4. Mount the drive mechanism.
5. Install the mounting profile (E) on the door leaf.
6. Hook the guide profile (G) into the mounting profile (E), on both sides insert and screw down the expansion element (F) with $\mathbf{1 , 5} \mathbf{N m}$.
7. Completely open the door leaf (max. 115°).
8. Insert glider (C) into guide profile (G) and screw down the rotating arm (B) on the drive mechanism \Rightarrow Tightening moment 25 Nm .
9. Snap in the covering caps (D) on both sides.
\Rightarrow back to page 23

4.5.3 Sliding rods pushing function / Lintel mounting

Material:

1	Drive mechanism GSd	$0548-034$	Covering aluminium
	Drive mechanism GSd	$0548-035$	Covering inox
	incl. fixing set	$0548-107$	
1	Mounting plate	$0548-358$	resp. $0548-360$ MOD
1	Sliding rods	$0548-134$	620 mm incl. sliding bolts $14 / 38 \mathrm{~mm}$
	Sliding rods KTL	$0548-105 / 01$	620 mm incl. sliding bolts $14 / 38 \mathrm{~mm}$

Procedure:

1. Mark out and drill the fastening holes on the lintel and the door leaf.
2. Mount the mounting plate.
3. If existing: Sub-assemble the drive-internal open position stop piece, integrated in the drive mechanism (see Option instructions 0548-992/02).
4. Mount the drive mechanism.
$\square \int$ Note:
The illustration shows the 14 mm sliding bolt. Depending on the situation, this bolt can be replaced by the version 38 mm . This will change the respective dimensions by plus 24 mm .

DIBt che- cked	Lintel depth (mm)	Min. width door leaf (mm)	Max. door leaf opening angle $\left({ }^{\circ}\right)$	Rod assem- blies (art. no.)	A (mm)	B (mm)	C (mm)
\checkmark	$-30 \ldots+10$	740	105	$0548-105$	140	280	620
\checkmark	$11 \ldots 20$	730	105	$0548-105$	130	280	620
\checkmark	$21 \ldots 30$	720	105	$0548-105$	120	280	620
-	$31 \ldots 50$	720	100	$0548-105$	120	280	620
-	$51 \ldots 60$	720	95	$0548-105$	120	280	620
-	$-30 \ldots+190$	870	105	$0548-105 / 02$	60	385	830

With lintel depths $>140 \mathrm{~mm}$ we recommend using the normal rods.

Options		$*$	$* *$
$0548-114$	Clamping piece standard	$3 \ldots 11$	55
$0548-124$	Clamping piece -13 mm	$3 \ldots 5$	42
$0548-125$	Clamping piece +20 mm	$3 \ldots .31$	75
$0548-126$	Clamping piece +50 mm	$3 \ldots 61$	105

Drive mechanism standard
5. Close the door leaf.
6. Install the mounting profile (E) on the door leaf.
7. Screw down the rotating arm (B) parallel to the drive mechanism \Rightarrow Tightening moment 25 Nm.
8. Push the guide profile (G) over the glider (C) and hook it into the mounting profile (E).
9. On both sides insert and screw down (with $\mathbf{1 , 5} \mathbf{N m}$) the expansion element (F).
10. Snap in the covering caps (D) on both sides.
\Rightarrow forward to chapter 4.6

Inverse application

5. Install the mounting profile (E) on the door leaf.
6. Hook the guide profile (G) into the mounting profile (E), on both sides insert and screw down (with $1,5 \mathrm{Nm}$) the expansion element (F).
7. Completely open the door leaf (max. 115°).
8. Insert glider (C) into guide profile (G) and screw down the rotating arm (B) on the drive mechanism \Rightarrow Tightening moment 25 Nm .
9. Snap in the covering caps (D) on both sides.
\Rightarrow back to page 23

Attention:
Check the motional sequence of the door leaf:
The rods must not touch. If the glider (C) makes screeching noises, it needs to be lubricated with a little WD40.

4.6 Adjusting the pre-stressing of the closing spring

Upon delivery, the closing spring is pre-stressed for a measure $X^{*}=26 \mathrm{~mm}$. To ensure a safe and optimal operation of the swing door drive mechanism, the correct pre-stressing must be adjusted for the closing spring (by means of the setting screw).

Note:
The correct pre-stressing of the closing spring must imperatively be adjusted before carrying out the automatic teach-in procedure! The setting values are mandatory for fire-protection and/or escape way doors.

Attention:
The setting screw needs to be shortened by 10 mm if it butts against the side cover's strain relief (with program selector key).

Procedure:

1. Close the door leaf.
2. Using the setting screw, adjust the measure X^{*} in function of the respective situation.
3. Open the door leaf by at least 60° and then let it be closed.

Drive mechanism standard

EN class	EN 3	EN 4	EN 5	EN 6
Width of door leaf	950 mm	1'100 mm	1'250 mm	1'400 mm
Closing torque 0...4 ${ }^{\circ}$	18 Nm	26 Nm	37 Nm	54 Nm
Normal rods				
Measure X *	-	27 mm	23 mm	17 mm
Sliding rods pulling function				
Measure X *	27 mm	22 mm	14 mm	-
Sliding rods pushing function				
Measure X *	26 mm	22 mm	17 mm	9 mm

* Measure X is an approximated value for a lintel depth of 0 mm . The force necessary for manually opening a door must not exceed 150 N . This effort shall be measured as a static force on the main closing edge (perpendicularly to the door leaf), at a height of $1^{\prime} 000 \mathrm{~mm} \pm 10 \mathrm{~mm}$.

Inverse application

EN class	EN 3	EN 4	EN 5	EN 6
Width of door leaf	950 mm	1 '100 mm	$1 ' 250 \mathrm{~mm}$	$1^{\prime} 400 \mathrm{~mm}$
Normal rods				
Measure X^{*}	40 mm	36 mm	31 mm	27 mm
Sliding rods pulling function	38 mm	34 mm	29 mm	23 mm
Measure X^{*}				
Sliding rods pushing function				
Measure X^{*}	36 mm	33 mm	27 mm	20 mm

* Measure X is an approximated value for a lintel depth of 0 mm .

Increase the spring tension only as little as necessary.
The drive mechanism must be able to open the door leaf safely from any position.

4.7 Setting the forceful closing function

[\int Note:
The accelerating function (forceful closing) is only activated for the standard drive mechanism.

4.7.1 Forceful closing cushioning

While an installation is in the state without mains power or in the operating mode MANUAL, the motor acts as an attenuator, thus guaranteeing a constant closing speed until the forceful closing range is reached.

To make sure that, when switched to the de-energized state or in the operating mode MANUAL, the door leaf is reliably engaged by the door lock, the drive mechanism is equipped with a forceful closing function (acceleration causing a forceful closing). By means of the potentiometer, the forceful closing cushioning (shortly before the door leaf reaches the closed position) can be adjusted accordingly.

Procedure:

1. Open the door leaf by 90° and then let it be closed.
2. Should the door leaf fail to engage in the lock, set the forceful closing cushioning (by means of the potentiometer provided on the control unit).

Warning:

In de-energized state or in the operating mode MANUAL, the closing procedure must last at least 3 seconds (from the open position 90° up to the closed position 0°).

Control PCB

Function adjusting trimmer (depending on position of the door leaf):
Open position up to forceful closing range (reference switch) \Rightarrow Adjusting closing speed Forceful closing range (reference switch) up to closed position \Rightarrow Adjusting forceful closing cushioning

4.7.2 Forceful closing range

Upon delivery from the factory, the activation of the accelerating function (forceful closing) is preset (i.e. it intervenes approx. 5° before reaching the closed position). Under normal conditions, it will not be necessary to change the default setting! However, in cases where in the de-energized state or in the operating mode MANUAL the door leaf fails to be reliably engaged in the door lock, the activation point of the accelerating function (forceful closing) can be shifted (by means of a continuously adjustable cam disk).

Note:
The setting range is between 5 and 15° of the door opening angle.

Procedure:

1. Using a screwdriver, carefully prize the service cover (C) out of the gearbox housing.
2. By means of a socket wrench $1,5 \mathrm{~mm}$, slightly loosen the locking screw (B), then carefully turn the cam disk (A) to the left or to the right.
3. Tighten the locking screw (B).
4. Open the door leaf by about 45° and then let it be closed. Check whether the door leaf is correctly pushed into the door lock.
5. Snap the service cover (C) into the gearbox housing.

(1) Sliding rods pulling function / Lintel mounting Normal rods pushing function / Lintel mounting Sliding rods pushing function / Lintel mounting
(2) Sliding rods pulling function / Lintel mounting Normal rods pushing function / Lintel mounting Sliding rods pushing function / Lintel mounting

Angle smaller
Angle bigger
Angle bigger
Angle bigger
Angle smaller
Angle smaller

4.8 Mechanical closing sequence regulator

Attention:
For any $\underline{2}$ leaves fire protection door, it is compulsory to mount the integrated closing sequence regulator ECO SRI (0548-172), homologated by the "Deutsche Institut für Bautechnik" Berlin (DIBt).

For any 2 leaves door with escape way function, a driver flap (supplied by customer) must be provided, unless this function is guaranteed by the locking system.
In the MANUAL mode, in the event of a mains failure or a fire alarm:
If the delayed leaf is the first one to be pushed open, the driver flap opens the earlier leaf sufficiently so that it is caught by the bar of the closing sequence regulator, which guarantees that the correct closing sequence is respected.

Procedure:

1. The installation is carried out according to the assembly instructions included in the packing.

5 ELECTRICAL CONNECTIONS

5.1 Power supply

STOP

Warning:

Before working on the drive mechanism, make sure that the mains cable is voltagefree! The mains supply line including mains plug (with respective protection) has to be provided by customers.
The mains supply cable 230 VAC must imperatively be routed below the chassis profile, whereas the cables of the control and safety elements can be routed within the drive mechanism.

Procedure:

1. If required: break out the pre-perforated flap on the side cover.

Depending on the assembly situation, it may be advisable to install the program selector on the opposite side.
2. Drill a hole $\emptyset 3,5 \mathrm{~mm}$ for the red LED into one of the two side covers and push the LED into the hole.
\int Note:
A fire alarm is displayed by the red LED.
This red LED must always be visible!
If required, it is also possible to drill a $\varnothing 5 \mathrm{~mm}$ hole into the front side of the drive covering.

3. Connect the mains supply cable as illustrated (see also wiring diagram E4-0141-713 in the appendix).
4. Mount the side cover extensions.
5. Mount the side covers.

5.2 Cable layout

5.2.1 Lintel mounting

5.3 Fire protection PCB

The fire protection PCB (red) provides the following connections:

X103 Manul triggering (for manual alarm); Fire alarm confirmation button
X104 Fire detectors (max. 3 pcs mounted in series)
X105 Optional connector (for connecting of one additional optional PCB)
X106 External fire alarm central (configurable by means of DIP-Switch France S101 = function: fire alarm central, passive or active)
X107 Alarm signaling (24 V output)
X108 Plug for LED fire alarm central (in the side cover)
The connection between the triggering elements and the ETS 64-R is monitored (wire rupture and shortcircuit). To this effect, a terminating impedance of 8,2 kOhm must be inserted at the extremity of each connection line (already existing).

Note:
In the event of bi-parting installations, both drive mechanisms need to be equipped with a fire protection PCB.

Installation:

The ETS 64-R is compatible with passives or actives fire alarm centrals. The settings described hereafter must only be carried out on the fire protection PCB which has been connected to the central fire alarm system.

Passive fire alarm central

The input of the fire alarm PCB is wired to a break contact with terminating resistor. In this case, the DIP switch is set to the position "passive" = "OFF" (factory setting) and the fire alarm central is connected to the terminal block X106 (instead of the resistor). It is important to make sure that the line has a total resistance of $8,2 \mathrm{k} \Omega$.

Active fire alarm central

The input of the fire alarm PCB is supplied with 24 V or 48 V (e.g. in France). In this case the DIP switch is set to the position "active" = "ON" and the central fire alarm system is connected to the terminal block X106 (instead of the resistor).

In the event of bi-parting installations, the fire protection elements can either be connected to the fire protection PCB of the drive mechanism of the earlier leaf (Master) or to the one of the drive mechanism of the delayed leaf (Slave).

Commissioning:

The fire protection PCB is automatically identified and memorized.
The commissioning procedure is carried out as described in chapter 6.

Diagnostics:

The identified fire protection PCB is displayed as follows in the diagnostic menu:

RO Relay PCB with DIP switch on position Addr0
R1 Relay PCB with DIP switch on position Addr1
FP Fire protection PCB
RP Radio PCB

+ identified and ready for operation
- neither identified nor registered
e defective or error
x removed

Remove the fire protection PCB:

All the PCBs are plugged into the control unit via a universal connector. A maximum number of two PCBs can be combined.

Attention:

All the PCBs must only be plugged into/removed from the control unit after the dive unit has been disconnected from the power supply source!

1. Switch-off the main installation swtich on the drive mechanism.
2. Remove the fire protection PCB.
3. Attach jumper onto the two pins X106
4. Switch-on the main installation swtich on the drive mechanism.
Display E60/30
5. Select menu:

Diagnostics
FPx
6. In the rest position, press in the joystick: Reset OK ? \Rightarrow The fire protection PCB is deleted from the configuration.

1 Fire alarm central
2 Manual triggering
3 Smoke detector/Thermal switch

- no response
+ Short-circuit
e Wire rupture
V Feeding 24 V
+ OK
e Error
S DIP-Switch
a active
p passive
R Acknowledgement
- not confirmed
+ confirmed

5.4 External elements

1. Mount all the required control and safety elements at their respective place.
2. Lead the cables of the elements up to the drive mechanism (by customers).
3. Connect the cables according to the diagram E4-0141-713_ECO (in the appendix).
$\square\ulcorner$ Note:
If an electric lock is provided, its connection rating is 24 VDC and max. $0,8 \mathrm{~A}$ (or $24 \mathrm{VAC} / 1,5 \mathrm{~A}$ by customers). It should be designed for a duty cycle of 100%. The electric lock locks the door leaf in the desired operating modes and is configurable.

Attention

For the Inverse application it is compulsory to use an electric lock or a holding magnet which maintains the door leaf in the closed position and must answer the following requirements:

- tested and homologated for escape and rescue ways
- opening also under preload (load-independent unlocking without jamming)
- 24 VDC / 100 \% duty cycle
- opening without mains power (normally open)

The starting delay TDelay must be >0 s and the relieving force during unlocking FDelay must be adjusted in accordance.
Electric lock or holding magnet must be connected in reverse order in comparison to the standard drive mechanism (see wiring diagram E4-0141-713_ECO in the appendix).

5.5 Motorized lock

The swing door drive mechanism and its control unit are always configured as Master. All the commands are transmitted to this control unit. The latter then unlocks/locks the motorized lock.

Attention:
The motorized lock must be homologated together with the fire safety profile system!

Functional performance:

Opening command	
Ω	Impulse and permanent command transmitted to motorised lock (CONFIG Unlock: IMPULS or PERMAN)
Locking latch opens	Starting delay TDelay to be set between 0,0...4,0 s or a feedback can be connected on terminal 32
Ω	Hold-open time expires
Drive unit opens	
Drive unit closes	provided that no command for the motorized lock is pending (to be set under CONFIG Unlock = PERMAN, operating modes Automa- tic, Exit, Manual)
Motorised lock locks	

6 COMMISSIONING

STOP
Warning:
During the teach-in procedure (which must only be carried out by experts), the safety devices (radar, sensors, ...) are switched off!
Before initiating the teach-in procedure, it is important to make sure that neither persons nor objects remain within the danger area of the moving door leaf, in order to avoid injuries or damages!

Attention:
Make sure that the motor connector plug has been correctly plugged into the control unit (see chapter 4.1 and 4.2).

Procedure:

1. Switch on the mains supply switch on the side cover (power-
 up).
2. Acknowledge the fire alarm (either by means of a connected button or by pressing and holding for a certain time a program key in the side cover).
3. Using the joystick, adjust the display direction: Move the joystick downward once \Rightarrow the display direction is switched to a readable position.

Press

Down
4. Programming the type of rod assembly Rod: Move the joystick to the left/to the right (see parameter chapter 7.4). Validate the correct type of rod assembly by means of OK: In the rest position, shortly push in the joystick.

Rod
STD-PH
5. Adjust the distance dAxis (distance in cm between the rotation axis of the door hinges and the mounting level of the drive mechanism \Rightarrow see illustration below).
dAxis
5 cm

Note:
dAxis is an approximate value. Depending on the installation situation, dAxis may have to be adapted.
6. Adjust the opening angle Ao and validate by means of OK.

Attention:
The steps 5 and 6 are influenced by the installation measures/dis-
 tance between the door hinges.

7. Adjust the opening speed Vo and validate by means of OK.

Vo
6

8. Adjust the closing speed Vc and validate by means of OK.
```
Vc
4
```

9. If desired:

Program the inverse application (spring-powered opening) and validate it by pressing OK.

Invers
 OFF

If you have selected inverse application:
Set the locking pressure Fch and confirm with OK. This is required if, at the time of commissioning, there is (yet) no electric lock or holding magnet.
Set the closing force FTic and confirm with OK. Limits the closing force during the Search run (evaluation of the Closed position prior to the first Teach run). FTic needs to be reduced or increased, depending on the condition of the door leaf/door frame.
10. Adjust the teach-in procedure (Teach) and validate by means of OK.
11. Start the teach-in procedure (Teach): validate by means of OK.
$\square \int$ Note:
Prior to a "Teach" procedure, make sure that the fire alarm has been reset.
12. Upon expiry of 10 seconds the teach-in procedure (Teach) is automatically initiated (or immediately by means of moving the joystick $\langle\hat{\triangleleft} \Rightarrow \sqrt{n}$ without OK). During the teach-in procedure the drive mechanism continues to beep. The following learning run is carried out:

- Inverse: First the system searches for the closed position by moving at super-slow speed (Search)
- Super-slow speed opening direction

FTic

Teach

Teach

ok?

Teach1

Teach2

- Super-slow speed closing direction.

13. Upon completion of the learning run the following message is displayed:

Done!	
x	E11

14. The display should now supply the following information: E11 indicates that the teach-in procedure (Teach) is not yet completed.
15. By giving an opening command, open the door leaf and let it be closed again. The door leaf will open and close at normal speed (without obstacle detection feature).
Note:
The door leaf must not be obstructed!
Now the display should provide the following information:
The teach-in procedure (Teach) is now completed.
Note:
A renewed teach-in procedure (Teach) is required if:

- the spring tension has been changed
- the leaf weight has been changed
- the type of rod assembly has been changed
- the opening angle Ao has been changed
- the Teach has been obstructed before reaching an opening angle of 20°
- the distance between axles (dAxis) has been changed
- the parameter Invers has been changed.

Additional parameter and menu navigation \Rightarrow see chapter 7.4.

6.1 Low-Energy mode

If no sensor system is used, the drive mechanism must be operated in the Low-Energy mode, which answers the Low-Energy requirements according to EN 16005.

In the Low-Energy mode, the drive mechanism is automatically set so that the door leaf does not exceed the static force of 67 N . For this purpose, the "Low-En" parameter must be activated (BOTH, CLOSE, OPEN) during commissioning. Afterwards, the door leaf weight and door leaf width are queried. Based on the parameters entered, the drive mechanism regulates the correct opening and closing time.

Warning:

The pre-stressing of the closing spring must be adapted (as explained in chapter 4.6) to the width of the door leaf, to make sure that the admissible opening and closing force of 67 N is respected (in accordance with the specifications of standard EN 16005). Compliance with the force must be checked by means of control measurements (see Control booklet, chapter 2.4.4).

6.2 Servo operation

In the Servo operation, the drive mechanism compensates the closing force of the spring. For the user, the door behaves like a normal door (without drive mechanism).
In the servo-operation, the door behaviour is as follows:

- The door always closes automatically.
- If the door is pushed open again by hand during the automatic closing procedure, the drive mechanism switches back to servo operation.
- The servo support can be adjusted in 5 stages (depending on door leaf width and weight).
- In the servo operation, the door can still be opened automatically by means of Key command (push-button/radio).

Note:
The servo operation is not possible with the following applications:

- 2 leaves installations
- Interlock operation
- Inverse applications.

Example:
For normal users, the door behaves like any normal manually operated door. For disabled persons, the door can be opened automatically.

6.3 Inverse application

Attention:

The starting delay TDelay must be $>0 \mathrm{~s}$ and the relieving force during unlocking FDelay must be adjusted in accordance.

Software configuration:

- Activate the parameter Inverse

Attention: the motor connector must not be plugged in the same manner as for the standard drive mechanism.

- The electric lock must be unlocked without mains power or powered by an external source.
- For installations without an electric lock, the interlocking force Fch must be programmed.
- If there is no electric lock and the interlocking force Fch is not adjusted, error 14/02 will be displayed as a warning after the teach-in procedure. This means that the door leaf will endlessly re-open.

Starting-up and teaching:

- The door leaf is closed at super-slow speed. The safety sensory system is active (except during the teach-in procedure).
- Start the teach-in from the open position: This ensures the teach-in of the necessary current for the possible angle between the mechanical open stop piece and the programmed open position Ao.
- Closing sequence control: During start-up and teach-in the door leaves are synchronized (in order to avoid a possible collision). The installation is only ready for operation as soon as both door leaves are closed respectively after the teach-in procedure has been completed.

6.4 Closing sequence control

For 2 leaves installations, the closing sequence control determines the order in which the door leaves are opened and closed. For the opening procedure, the earlier door leaf (Master leaf) is the first one to be opened, whereas for the closing procedure the delayed door leaf (Slave leaf) is the first one to be closed. This sequence ensures a correct overlapping of the door leaves.

Connections:

Opening elements (KE, OEO, OEI, Signal via radio PCB) connected to Master only act upon the Master (single leaf operation). Opening elements connected to Slave act upon the Master as well as on the Slave (bi-parting operation).

The safety elements SER and SES are connected to the respective drive mechanism.

An EMY element connected to the Master triggers the function configured on the Master on both drive mechanisms (Master and Slave) simultaneously.
An EMY element connected to the Slave only triggers the spring closing action CL-SPR on the Slave (and has no influence on the Master).

An electric lock, which locks the Master leaf, is connected to the Master. Accordingly, an electric lock, which locks the Slave leaf, is connected on the Slave.

Function:

The first door leaf to be put in motion for the opening procedure is the Master; by means of DubleD, this leaf is configured as MastrA. Its partner is the Slave, which is configured as SlaveA by means of DubleD.

In the event of an existing CAN connection, the Master is identified by a small black (m) and the Slave by a small black (s). If however there is no connection, this is indicated by a small white (m) respectively a small white (s).

The parameter settings for the Master and the Slaves are entirely independent from each other. It is thus possible to select a Vo $=4$ for the Master and a Vo $=5$ for the Slave.

In order to guarantee a collision-free opening of both door leaves, the Slave leaf lets the Master leaf go ahead and initiate the opening. This time lag can be defined on the Slave by means of AoSeq. The default value of AoSeq is 20°, which is sufficient for most of the 2 leaves installations. This means that the Slave only starts to open after the Master has exceeded an opening angle of 20°.
From then on, it is admissible for the Slave to catch up with and pass the Master if this should be required. This is done by configuring a higher Vo value for the Slave than the one for the Master. In cases where (due to an electric lock connected to the Master) TDelay of the Master is configured with a higher value than $0,0 \mathrm{~s}$, then the angle between the Slave and the Master is accordingly increased. To compensate this, AoSeq can be reduced in accordance.
An AoSeq value of 0° means that both door leaves will be simultaneously opened, i.e. that no opening delay is active.

The default value of AcSeq is 20° and thus sufficient for the majority of 2 leaves installations. In cases where a mechanical closing sequence regulator is used with a mechanical closing delay of e.g. 90°, AcSeq must be programmed with a value of 90° or more.

AcSeq 20° means: The Master only starts closing as soon as the Slave has gained a lead of 20°. This advance guarantees that the Master will be closed in one go (without intermittence), which results in an optically pleasing closing motion.
The Master is allowed to overtake the Slave. 20° (value AcSeq) before reaching the closed position, the Master checks whether the Slave is already closed. If not, the Master will perform an intermediate stop in order to prevent a collision.

An active SES signal on a door leaf causes a safety stop of both door leaves. The same applies for the SER signal. An active SER signal causes both door leaves to reverse their motion.

A 2 leaves installation can be operated in the 1 leaf mode. An active EMY signal on the Slave programs the closing sequence as a single-leaf configuration.
If only the EMY signal on the Master is active, then this EMY signal is applicable for both door leaves. In accordance with the action configured on the Master by means of EMY-IN, both door leaves carry out a CL-SPR (Close Spring), STOP, OPEN or CL-MOT (Close Motor).
If only the EMY signal on the Slave is active, then the Slave carries out a CL-SPR, regardless of the action configured on the Slave by means of EMY-IN.
If both EMY signals are active, then the Master performs its configured EMY-IN action and the Slave performs a CL-SPR. One exception of this rule is the Master in the EMY-IN configuration OPEN. In this case, both door leaves will be opened.

Procedure:

1. Connect both control units by means of the CAN cable 0383-194/07 (by plugging it into the socket X117).
$\square \int$ Note:
The respective control and safety elements are connected to the corresponding drive mechanism.
2. Take the Master drive mechanism into operation (see chapter 6).
3. For the Master drive mechanism: Select the operating mode OPEN.
4. Take the Slave drive mechanism into operation (see chapter 6).
5. Configuration of the Master drive mechanism:

- DubleD = MastA
- AcSeq = desired time lag of the closing angle.
$\square\ulcorner$ Note:
In cases where a mechanical closing sequence regulator is used, start with a AcSeq of 90°; afterwards AcSeq can be reduced.

6. Configuration of the Slave drive mechanism:

- DubleD = SlaveA
- AoSeq = desired time lag of the opening angle.

Control:

1. Check the display of the Master control unit to see if a small black (m) is visible on the first level (connection existing). On the display of the Slave control unit, a small black (s) must be visible.
$\int\ulcorner$ Note:
A small white (m) resp. (s) indicates: missing connection.
2. Transmit a Key command to the Slave drive mechanism:

- The Master-drive mechanism is the first one to open, followed by the Slave drive mechanism (which is delayed by the value of the opening angle).
- In the open position the hold-open time expires on the display of the Slave control unit.
- The Slave drive mechanism is the first one to close, followed by the Master drive mechanism which is delayed by the value of the closing angle).

6.5 Interlock operation

To create an interlock, two consecutive doors are electrically connected (by means of CAN cable) and configured as an interlock unit during the commissioning.

Warning:

If the interlock is made of fire-safety doors, a smoke detector and a manual triggering button must be installed for each door! The Interlock operation may only be used for single door leaf systems!

6.5.1 Standard interlock (IL Type Safety)

Both doors need a separate opening command. The second door can only execute the opening commands if the first door is closed. If the second door receives the opening command before the first door is closed, it will be stored temporarily and executed as soon as the first door is closed.
The parameter "ILCdRc" can be used to deactivate the buffering of opening commands. If "ILCdRc" is inactive ("Inacti"), the second door only accepts the opening commands when the first door is closed.

6.5.2 Hospital interlock (IL Type Hospital)

Basically, the hospital interlock functions in the same way as the standard interlock. However, only one opening command is required at the first door to open both doors. This happens in an automatic sequence.

As soon as the first door is closed, the opening command is forwarded to the second door. The second door thus opens without an additional opening command.

Warning:

For the event that someone should get entrapped in the interlock or would like to return through the first door, an emergency button must be installed (invalidation of the interlock function).

6.5.3 Netherland interlock (ILType NL)

Basically, the Holland interlock functions in the same way as the hospital interlock. In addition, there is an adjustable override time "TOverd". If this override time is exceeded, the second door can be opened even if the first door is not yet closed.

The override time is reset as soon as both doors have been closed again.

Procedure:

[\int Note:
Both installations must be plugged into resp. out of the same power supply.

1. Connect both control units by means of the CAN cable (by plugging it into the socket X117).
2. Normal commissioning of both drive mechanisms.
3. Configuration of the drive mechanism for the exterior door (A):

- InterL = SideA

4. Configuration of the drive mechanism for the interior door (B):

- InterL = SideB

Control:

1. Check the display of the Master control unit to see if a small black (w) is visible on the first level (connection existing).
$\int \Omega$ Note:
A small white (w) indicates: Missing connection.
2. Transmit a Key command to the exterior door (A):

- On the display a big black (W) appears (door is not closed).
- While the exterior door (A) is open, transmit a Key command to the interior door (B) (the latter must not be opened).

3. Transmit a Key command to the interior door (B):

- On the display a big black (W) appears (door is not closed).
- While the interior door (B) is in the open position, transmit a Key command to the exterior (A) (the latter must not be opened).
\int Note:
The parameters ILAuto, ILExit and ILNigt enable you to configure the operating modes in which the interlock system shall be active.

6.6 Adhesive labels

6.6.1 Service sticker

1. Attach the service sticker (outside) onto the degreased surface of the drive mechanism covering (easily visible for the customer).
2. Stick the monthly sticker onto the service sticker, turning the monthly sticker until the checking date matches the arrow.
3. Using a water-proof felt tip pen, enter the year of the next checkup on the monthly sticker.

6.6.2 Ü-sticker

Note:
Only for Germany.

1. Attach the Ü-sticker (at a clearly visible place) onto the degreased surface (inside) of the drive case.

SGS EN4...EN6 Normal rod pushing function
GSD EN3...EN6 Sliding rod pushing function
GSZ EN3...EN5 Sliding rod pulling function

6.6.3 Diagram sticker

1. After cleaning and degreasing the gluing surface, attach the diagram sticker (in the respective language) to the inside of the covering.

6.6.4 Fire protection sticker

1. After cleaning and degreasing the gluing surface, attach the fire protection sticker (in the respective language) to the inside of the covering.

6.6.5 Rating plate

The rating plate is attached onto the motor. In order to consult it, the drive mechanism covering must be opened.

1. Using a permanent marker, tick off the existing elements on the rating plate:
IRM Integrated smoke detector
SRI Integrated closing sequence regulator

6.7 Mount the drive mechanism covering

Material:

1	Covering	$0548-400$	Aluminium Aluminium
1	Covering accessories	$0548-143$	
or			
1	Covering	$0548-303$	Stainless steel
1	Covering accessories	$0548-115$	Stainless steel

Procedure:

1. Mount the covering and the accessories as shown in the illustration.

7 CONTROL
 7.1 Main switch

The drive mechanism is supplied with a built-in main switch (A). This main installation switch enables you to disconnect the power supply from the drive mechanism. The door leaf then is closed from any position by means of spring power (Invers = spring opening, unless the door leaf has not been locked). The motor attenuation ensures a controlled closing (Invers = opening).

7.2 Program selector

The drive mechanism is supplied with a built-in program selector (B), which allows enabling the operating modes AUTOMATIC, NIGHT, OPEN, MANUAL and EXIT. The presently enabled operating mode is identified by the illuminated key.

Note:
In the event of a pending fatal error, alle the keys shortly flash up. In the event of a fire alarm, the red LED in the other side cover lights up.
Acknowledge the fire alarm (either by means of a connected button or by pressing and holding for a certain time a program key in the side cover). In the event of 2 leaves installations, this alarm must be reset for both drive mechanisms.

Key lock (3 versions)
1 Fix
One particular program setting has been predefined by default. This setting can only be overridden by an external program switch or a timer.

2 Toggle
Locking:
Press the activ program key during at least 5 seconds. The locking is signaled by a short blip. Unlocking:
Press the activ program key during at least 5 seconds. The deactivaton is signaled by two short blips.

3 Time
Locking:
If the program keys have been activated within a period of 5 minutes, the are automatically locked.
Unlocking:
Press the active program key during at least 5 seconds. The deactivation is signaled by two short blips.

7.3 Operating modes

The following operating modes can be enabled by means of the program selector:
AUTOMATIC
Automatic opening via the opening elements inside/outside + Key.

Automatic closing upon expiration of the adjustable hold-open time. llat | NIGHT |
| :--- |
| The door leaf can only be opened via the opening element Key (key-operated |
| siwtch outside). |

7.4 Adjustings

The parameters can be changed on the control unit by means of the display and the joystick.
The movements of the joystick have the following effects:

- Vertical joystick movement (upward/downward) \Rightarrow Scroll through the displayed information.
- Horizontal joystick movement (to the left/to the right) \Rightarrow Change the settings.
- Shortly press in the joystick in the rest position \Rightarrow Validation OK.

7.4.1 Motional parameters (PARAMETER)

Parameter	Description	Setting range	Default
Vo	Opening speed (velocity open)	0... 14 ($5 . . .50^{\circ} / \mathrm{s}$)	6
Vc	Closing speed (velocity close)	0... $14\left(5 . . .50^{\circ} / \mathrm{s}\right)$	4
TOEx	Hold-open time opening element inside/outside (time hold opening element inside/outside)	0... 60 s	3 s
TKey	Hold-open time Key (time hold opening element Key)	0... 180 s	5 s
Obst	Adjustable obstacle detection Upon reaching the adjusted number of obstacles in sequence, the drive mechanism switches to manual operation.	1... 5	5
TDelay	Starting delay (time delay lock)	0,0..4,0 s	0,2 s
FDelay	Relieving force during unlocking (force delay) \Rightarrow only effective if TDelay is >0	0,0...7,0 A	OFF
TLock	Door rectification time (time press close)	0,0...4,0 s	0,5 s
FLock	Pressing force during locking (force lock) \Rightarrow only effective if TLock is >0	0,0...7,0 A	2,0 A
FSlam	Accelerating function in automatic mode (force slam)	0... 10	OFF
FWind	Obstacle detection optimized for exterior doors (force wind)	OFF OPEN CLOSE BOTH	OFF
Fo	Opening force (force open)	0... 9	4
Fc	Closing force (force close)	0... 9	4
Foh	Hold-open force (force open hold)	0... 9	0
Fch	Interlocking force (force close hold) \Rightarrow automatically programs FLock and FDelay if these are 0	0,0...3,5 A	0
LowEn	Low-energy operation (Low-Energy) according to EN16005	OFF BOTH CLOSE OPEN	OFF
Width	Width door leaf to be adjusted \Rightarrow only if LowEn is active	$90 . . .160 \mathrm{~cm}$	100 cm
Weight	Weight door leaf to be adjusted \Rightarrow only if LowEn is active	$50 . .250 \mathrm{~kg}$	100 kg
Ao	Door leaf opening angle (angle open) If the opening angle is changed during the operating mode OPEN, the operating mode MANUAL needs to be selected for closing the door.	$20 \ldots\left(190^{\circ}\right)$ Rod depending	95°
Rod	$\left.\begin{array}{lll}\text { Type of rod assembly (Rod) } & \text { Lintel mounting } & \begin{array}{l}\text { Normal rods } \\ \text { Sliding rods pushing function } \\ \text { pulling function }\end{array} \\ & \text { Leaf mounting } & \begin{array}{l}\text { Sliding rods } \\ \text { pushing function }\end{array} \\ \text { Sliding rods pushing function } \\ \text { push } \\ \text { pulling function }\end{array}\right\}$	STD-PH SLI-PL SLI-PH WIN-PH WIN-PL WIN-ST DIR-PH DIR-PL	${\underset{*}{\text { STD-PH }}}^{2}$
Invers	Inverse application In the event of a power failure/error, the door leaf is opened by spring power from any position (unless it has not been locked). The position of the motor connector is reversed with regard to the standard drive mechanism. The electric lock/holding magnet must be connected in reverse order in comparison to the standard drive mechanism (see wiring diagram E4-0141-713_ECO).	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$	OFF
dAxis	Distance between rotation axis of the door hinges and the mounting level of the drive mechanism (distance Axis). dAxis is an approximate value. Depending on the installation situation, dAxis may have to be adapted.	$-8 \ldots+25 \mathrm{~cm}$ Rod depending	$0 /+8 \mathrm{~cm}$ Rod depend.
Fos	Limitation of the opening force Must not be increased in Germany!	5... 14 A	5 A
FTic	Closing force in closed position before Teach \Rightarrow only visible if Invers is ON	5... 14 A	5 A

7.4.2 Configuration (CONFIG)

Parameter	Description	Setting range	Default
Servo	Support for manual push to open The key opens automatically. Five-position adjustment, depending on the width and weight of the door leaf. Only usable if DubleD = OFF, Invers = OFF and InterL = OFF.	$\begin{array}{\|l\|} \hline \text { OFF } \\ 1 . . .5 \end{array}$	OFF
APuGo	Triggering angle Push\&Go (angle push\&go) Only usable if Servo = OFF.	$\begin{array}{\|l\|l} \text { OFF } \\ 2 . . .10^{\circ} \end{array}$	OFF
ASES	Suppression point Safety Element Stop (angle safety element stop) \Rightarrow see illustration 1) If Ao is changed, ASES is automatically set to Ao.	$45^{\circ} \ldots$..Ao	95° Ao depen- ding (95°)
ASER	Suppression range of the safety element reversing (angle safety element reversing) \Rightarrow see illustration 2)	0...60 ${ }^{\circ}$	0°
SeOpCo	Persistent opening (safety element open continue) After a Safety Element Stop during the opening procedure, the door shall continue its opening move (instead of closing), as soon as SES is activated.	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$	OFF
SeOpTi	Waiting time till the drive mechanism closes even if $\mathrm{SeOpCo}=\mathrm{ON}$ (safety element opening time), in the event that a fixed object blocks the door (only visible if $\mathrm{SeOpCo}=\mathrm{ON}$)	$\begin{aligned} & \text { PERMAN } \\ & 1 . . .60 \mathrm{~s} \end{aligned}$	20 s
SESClo	Safety element Stop activated/deactivated during the closing motion (safety element stop closing)	ACTIVE INACTI	INACTI
EMY-IN	Configuration of the Emergency terminal (break contact) (emergency input)	CL-SPR (spring) STOP OPEN CL-MOT (motor)	CL-SPR
OExStp	Step-by-step control function (opening element step)	OFF OEI OEO KEY RADIO	OFF
FPReset	Acknowledment of the fire alarm by the fire alarm central (only allowed in cases were the door is within sight distance of the fire alarm central)	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$	OFF
RC 0.1	Parametrizable relay output 1 on optional PCB 1 (relay contact) (only visible if relay PCB 0 is plugged in)	CLOSED OPENNG	CLOSED
RC 0.2	Parametrizable relay output 2 on optional PCB 1 (relay contact) (only visible if relay PCB 0 is plugged in)	$\begin{aligned} & \text { OPEN } \\ & \text { CLOSNG } \end{aligned}$	OPEN
RC 0.3	Parametrizable relay output 3 on optional PCB 1 (relay contact) (only visible if relay PCB 0 is plugged in)	PSAUTO PSNGHT	ERROR
RC 0.4	Parametrizable relay output 4 on optional PCB 1 (relay contact) (only visible if relay PCB 0 is plugged in)	PSEXIT PSOPEN	GONG
RC 1.1	Parametrizable relay output 1 on optional PCB 2 (relay contact) (only visible if relay PCB 1 is plugged in)	PSMANU GONG	OPENNG
RC 1.2	Parametrizable relay output 2 on optional PCB 2 (relay contact) (only visible if relay PCB 1 is plugged in)	SIX30S	CLOSNG
RC 1.3	Parametrizable relay output 3 on optional PCB 2 (relay contact) (only visible if relay PCB 1 is plugged in)		PSAUTO
RC 1.4	Parametrizable relay output 4 on optional PCB 2 (relay contact) (only visible if relay PCB 1 is plugged in)		LOCKED
Unlock	Impulse/Permanent unlocking (impulse unlock)	IMPULS PERMAN	IMPULS
UnloCl	Retract the motor lock before closing (unlock) and lock, after the door leaf has been closed. By engaging the lock latch, the closing noise of the door is reduced. (unlock while closing)	Inactive Active	Inactive
EL-Fb	Return signal of the electric lock (electric lock feed back) N.O. \Rightarrow Contact open if in the unlocked state (-), closed if in the locked state (+) N.C. \Rightarrow Contact open in the locked state $(+)$, closed in the unlocked state $(-)$ $(+)$ and $(-)$ indicate the status in the diagnostic menu	$\begin{array}{\|l\|l\|} \hline \text { OFF } \\ \text { N.O. } \\ \text { N.C. } \\ \hline \end{array}$	OFF
LockAU	Operating mode AUTOMATIC locked (locked automat) (only visible if Unlock = Perman)	UNLOCK LOCK	UNLOCK
LockEX	Operating mode EXIT locked (locked exit) (only visible if Unlock = Perman)	UNLOCK LOCK	LOCK
LockMA	Operating mode MANUAL locked (locked manual) (only visible if Unlock = Perman)	UNLOCK LOCK	UNLOCK
LcdDir	Orientation of the display (LCD direction)	0... 1	0
MovCon	Endurance test Open/Close (moving continuous)	OFF ON-FLT ON-PRM	OFF
OExMAN	Acceptance of opening commands after a manual door opening (only if APuGo = OFF) (opening element inside/outside manual)	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$	OFF
OEOSIR	Safety device on opposite side to door hinge as opening element (only from Closed position). Note: This parameter must be set to OFF for teaching-in of the LZR-FLATSCAN. (SER as OEO)	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$	OFF
FPMaOp	Fire alarm acknowledgement by manually opening and holding the door leaf in the taught-in open position. (fire protection manual opening)	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$	OFF
FPMaCl	Fire alarm triggering by manual closing of the door leaf from the open position. (fire protection manual closing)	$\begin{array}{\|l} \hline \text { OFF } \\ \text { ON } \\ \hline \end{array}$	OFF

PSKIZe	Zero position of the program setting (operating mode); fixed program position that can only be changed by means of the terminals on the control unit (program selector key in the side cover inactive). Use for external program switch (only four terminals) or for controlling the program positions via the terminals on the control unit. (program selection terminal zero)	NO ACT PSOPEN PSHAND PSAUTO PSEXIT PSNIGT	NO ACT
SCBloc	Lock the program selector key in the side cover (side cover block) Toggle = Lock/unlock (press active program key during at least 5 seconds). Time = Lock (automatically after 5 minutes without any activation of the program keys), unlocking (press active program key during at least 5 seconds).	OFF TOGGLE TIME	OFF
Buzzer	The buzzer signals the door leaf movement (persons with amblyopia/without hindrance)	OFF BOTH OPEN CLOSE	OFF

Illustration 1)
Illustration 2)

7.4.3 Installations with multiple door leaves (DOUBLE DOOR)

Parameter	Description	Setting range	Default
DubleD	Closing sequence role (Master/Slave) and interlock side (A/B)	OFF MastrA SlaveA MastrB SlaveB	OFF
AoSeq	Current delay angle for opening sequence control (Slave) (only visible if DubleD active)	0...110 ${ }^{\circ}$	20°
AcSeq	Current delay angle for closing sequence control (Master) (only visible if DubleD active)	0...110 ${ }^{\circ}$	20°
InterL	Interlock	OFF SideA SideB	OFF
ILAuto	Interlock mode \Rightarrow Operating mode AUTOMATIC (only visible if InterL active)	Inacti Active	Active
ILExit	Interlock mode \Rightarrow Operating mode EXIT (only visible if InterL active)	Inacti Active	Active
ILNigt	Interlock mode \Rightarrow Operating mode NIGHT (only visible if InterL active)	Inacti Active	Active
ILType	Safety The two doors function as an interlock (in all operating modes). The second door only opens when the first one is closed. This applies to both doors. Spital Automatic sequence \Rightarrow whenever a door opening command is issued, the door receiving the command is opened. Once it has closed again, the second door opens automatically. NL The second door only opens when the first one is closed, or after the override period has elapsed.	Safety Spital NL	Safety
TOverd	Only visible in ILType NL When the override period has elapsed, the interlock function is cancelled. Once both doors are closed, the interlock function is activated (override time).	$\begin{aligned} & \text { OFF } \\ & 1 \ldots . . .60 \end{aligned}$	25
RdrOEI	OFF OEO/OEI radar function activates normally. The door closes if both are inactive. ON The OEO deactivates the (OEI) radar inside smaller interlocks to prevent it from keeping the door open.	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$	OFF
ILCdRc	Active Open commands are temporarily stored, and then carried out as soon as the second door is closed. Inactive Open commands are not carried out until the second door is closed. (interlock open command recording)	Active Inacti	Active

7.4.4 Menu navigation

On the 1st level, the following information is shown on the display:

1st display line:

The door position is represented by means of the arrows (><). Alternatively, the motion-relevant opening and safety signals are displayed. The double hash signs (\#\#) indicate that the door is locked. In the open position the hold-open time is shown in the form of a countdown.

Display of the door position:
<REF?> Waits for reference switch
< ?? > Unknown
>< Closed
>\#\#< Closed and locked
<< >> Opening
$<\quad>$ Open
>> << Closing
== Stopping
Display of the door control:
OEO Opening element outside
OEI Opening element inside
KEY Opening element NIGHT
SES Safety element Stop
SER Safety element Reversing
SEF Safety element Force (obstacle detection)
EMY Emergency element
PUGO Push-and-Go

2nd display line:

- at the bottom, left-hand side, the presently enabled operating mode is displayed (a frame around the symbol indicates the overriding operating mode).
- (m) means closing sequence - Master
- (s) means closing sequence - Slave
- (w) means interlock
- at the bottom, right-hand side, the presently active errors are displayed.

By means of OK you can switch over from the first to the second level.

DIAGNOSTICS
Diagnostic tools

- K-I-O-R-S-E shows the inputs KEY (K), OEI (I), OEO (O), SER (R), SES (S), EMY (E).
(+) stands for active, (-) for inactive.
- $5.1 \mathrm{~A} 95^{\circ}$ shows the motor current and the door opening angle.
- $37^{\circ} \mathrm{C} 2565$ indicates the presently measured temperature in the power electronics, completed by the minimum and the maximum values. OK causes the minimum and the maximum values to be reset.
- Simulate Key: OK triggers a Key command.
- E-Lock: L- shows the status of Lock (L). FB- shows the input El-Fb. OK actuates the electric lock. L+ resp. FB+ means locked. L- resp. FB- means unlocked.
- HW Version: Version of the Logic PCB.
- SW Version: Version of the Software.
- Cycles: Total number of openings (this value is memorized).

Optional PCBs \Rightarrow see chapter 13.6.

ERROR ACTIVE
Pending active errors

- The pending active errors are displayed in a list. This list is updated at the end and the latest additions appear during the next passage.
AO indicates the latest error that has occurred.
- Exit the list by pressing OK.

HISTOR ERROR

Formerly active errors

- HO indicates the latest error that has occurred.

REINIT

Carry out a re-initialization

- PARAM Reset sets all the motional parameters back to the default values (inclusive opening angle, rod assemblies, Invers and dAxis).
- CONFIG Reset sets all the configuration settings back to the default values.
- DOUBLE Reset sets all the closing sequence and interlock settings back to the default values.
- FACTOR Reset

The control unit is reset to the delivery configuration programmed by the manufacturer. This means that all the motional parameters, configurations, closing sequence and interlock settings are reinitialized with the default settings.

- Reset OK? is validated by means of OK and aborted by any other joystick movement.

BLOCK/UNBLOC
Lock/unlock the joystick

- BLOCK

Lock the joystick. For a temporary unlocking, press OK for more than 1 second.
60 seconds after the last joystick actuation, the joystick is automatically relocked.

- UNBLOC

Permanent unlocking of the joystick.

TEACH
Completely close the door leaf. Initiate a teach-in procedure (during the teach-in procedure the drive mechanism continues to beep).

- Teach OK? is validated by means of OK and aborted by any other joystick movement.
- The teach-in procedure can be canceled by means of the D-BEDIX (C-key).

Setting of the opening angle (Ao): During the first teach-in run, the drive mechanism moves to the open position (Ao) or up to the recommended open position stop piece, whichever event happens first, and the obtained result is memorized as opening angle. In the event of an excessively big difference between the actual opening angle and the displayed angle (in the diagnostic menu), this angle can be corrected (by means of dAxis). If the difference persists, the installation precision should be checked.

8 SERVICE

A regular service (maintenance/checking) is absolutely indispensable in order to guarantee a safe operation and long lifetime of the installation. The service must be carried out at least once a year:

- by a expert (according to the following checklist)
- by a authorized specialist (according to maintenance control booklet for fixing devices).

This checkup work basically refers to visual and functional checking destined to evaluate the integrality, the condition and the efficiency of the components and safety devices (checking of the different elements as far as these are included in the installation).

Warning:

To avoid jeopardizing the safety of persons, any defective safety elements may not be disonnected in order to continue the operation of the installation!

Attention:

In order to guarantee the availability of the installation, any elements showing signs of wear must be replaced as a preventive measure!

Note:

- Every service which has been carried out shall be entered into the control booklet!
- The following service description refers to the basic components. The options are described in detail in chapter "Options".

Attention:

If the fastening screw (A) of the rotating arm is released, this screw must be secured upon tightening by means of Loctite 243 , or else a new original screw needs to be inserted (see chapter: Spare parts) \Rightarrow Tightening moment 25 Nm.

8.1 Service for pedestrian doors

STOP

Warning:

Electrocution hazard! Before working on any live elements, pull out the mains plug as well as any existing plug of the emergency battery respectively switch off the main installation switch!

Installation				
General condition	x			
Free door movement (manually)	x			x
Door guides/Bottom guide rail	x	x		x
Door sealing joints	x	x		x
Sliding door leaves/Side panels/Protection leaves	x	x		
Coverings/hinge-type covers	x	x		
Tight fitting of screws and nuts	x			
Drive mechanism				
Drive mechanism	x	x		x
Transmission elements such as: Toothed belts, flat belts, cables, rods or chains	x	x		x
Running carriages with carrying pulleys and counter-pressure pulleys	x	x		x
Carrier rails	x	x	x	
Open/Closed position	x			x
Control elements				
All the existing control elements such as: Detectors, radars, key-operated switches, contact carpets, etc.	x	x		x
Control unit				
Electrical connections	x			
Functions related to installation	x			x
Program switch functions	x			
Emergency battery	x			
Escape way doors				
Emergency opening with mains failure ${ }^{1}$	x			
Opening speed 80% in 3 seconds ${ }^{1}$	x			x
Activation escape way detector 1,5 m in front of the door ${ }^{1}$	x			x
Minimum escape way width ${ }^{1}$	x			x
Maximum opening force at Break-Out leaf 220 N (1 m from floor)	x			x
Safety elements				
Reversing/stopping mechanism	x	x		x
Door locking/Manual unlocking mechanism	x	x	x	x
Rubber cable	x			x
Monitoring switch	x	x		x
Light barrier/Presence detector	x	x		x
Safety according EN16005				
Protections against impact				
Protections against crushing				
Protections against getting caught in				
Protections against shearing				
Protections against imprisoning				
Safety deficiencies must be communicated to the operator (in writing)!				
Miscellaneous				
Rating plate, arrow sticker, glass sticker, etc. existing?				
Control booklet existing and completed?				

1 Only for redundant drive mechanisms.
${ }^{2}$ ECO cleans all the elements of the installation provided this is necessary for the function of the installation. A general cleaning of the installation is not planned.

8.2 Fundamental checking

1. Dismount the covering of the drive mechanism.
2. Check all the cable connections.
3. Normal rods:

Separate the rod arm (B) from the rotating arm (A): Pull the spherical joint (C) apart.
4. Check the free running movement of the door leaf
5. Check the bearings of the drive mechanism
 for increased noise level.
6. Normal rods:

Connect the rod arm (B) and the rotating arm (A): Snap in the spherical joint (C).
7. Mount the covering of the drive mechanism.

9 TROUBLESHOOTING

Warning:

Electrocution hazard! Before working on any live elements, pull out the mains plug respectively switch off the main installation switch!
If a malfunction occurs which might be detrimental to the safety of the users, and which cannot be eliminated without delay, the operator must be informed and if required the installation shall be taken out of operation. The installation must be repaired as soon as possible.

Note:
Every troubleshooting procedure which is carried out must be entered into the control booklet!

9.1 Malfunction with error-no.

The error is indicated on the display of the control unit.
Definition of the column "Reaction".
A The drive mechanism deactivates itself during a certain period: Manual operating mode or stopping position.
F Fatal error
H Manual operating mode with re-starting attempt
W Warning

9.1.1 Drive mechanism

No.		Description	Cause	Elimination	Checking time	Reaction
E01	01	Encoder	Channel A lost	Check the encoder connection. Check the motor cable. The sense of rotation of the motor is not in compliance with the rod assembly. The door is blocked. Check if a jumper has been inserted on X106.	During run	H
	02		Channel B lost			
	03		Channels A + B lost			
	04		Short-circuit A + B			
	05		Dysfunctions			
	06		Motor cable uncorrect plugged in		Prior to start-up	H
	07		No channel A			
	08		No channel B			
	09		No channel A + B			
	10		Short-circuit A + B			
	11		Malfunction		During testing	H
	12		Malfunction			
E02	01	Motor current	Current too high	Check the motor cable. Check if a jumper has been inserted on X106.	Prior to start-up	H
	02		Current too low Jumper missing			
E03	01	Cushioning	Test failed once	Switch the drive mechanism to the MANUAL operating mode and carefully check if the door closes in a cushioned manner. If not: replace the hardware. If yes: check/ correct the friction of the door leaf and the pre-stressing of the closing spring.	Prior to the closing motion, after start-up, and subsequently every 24 h	W
	02		Test failed twice. Damping defective or opening beyond the peak of the cardioids curve.			F Drive unit is functionning. Buzzer actif.
E04	01	Reference switch	Detected in the open position	Check the connection and the switching point of the reference switch (see chapter 4.7.2). The reference switch must be activated in the closed position (switching contact open).	Open position	F
	02		Not detected in the closed position		Prior to the first teach-in run	A
	03		Not detected in open position			
	04		Inverse application: Not detected in open position			
E05	00	Power limitation	Overload of the control. the maximum power is restricted	Check/correct the friction of the door leaf and the pre-stressing of the closing spring.	Permanent	A

9.1.2 Operating

No.		Description Fullteach required	Cause	Elimination	Checking time	Reaction
E10	01		Parameter Ao, Rod, Invers or dAxis changed	Carry out a teach	Upon changing the drive mechanism configuration	H
	02		Minimum opening angle has not been reached	Check the locking/electric lock	During Teach	H
E11	01	Halfteach required (Opening)	Parameter Vo changed	Carry out a complete and unhindered opening cycle	Upon changing the motional parameters	W
	02	Halfteach required (Closing)	Parameter Vc or FSlam changed	Carry out a complete and unhindered closing cycle		
E12	03	Excessively high current consumption during Teach in the open position (>5 A)	Drive unit pushes against the open position stop piece or an obstacle. The spring tension is possibly too high.	Reduce the opening angle Ao. Reduce the spring tension.	Open position Teach 3 (E11)	F
E14	01	Locking/electric lock	The door leaf got caught in the locking/electric lock. Feedback: the electric lock ELFb does not switch.	Check the function of the locking/ electric lock. Feedback: check the electric lock ELFb.	When opening from a closed position	H
	02		The inverted operation has no locking, or the interlocking force Fch has not been programmed	Program/increase the interlocking force Fch	At the end of the teach-in procedure	W
E15	01	Obstacle in opening direction	Too many successive obstacles have occured	Examine the installation. Remove the obstacle. Move the door leaf to the target position.	Permanent	$\mathrm{H}, \mathrm{~A}$ Restart after 60 s
	02	Obstacle in closing direction				
E16	01	Temperature	Temperature on output level has reached $81{ }^{\circ} \mathrm{C}$	Respect the applicaiton limits	Permanent	A Drive unit functions with reduced power
	02		Temperature on output level has reached $91{ }^{\circ} \mathrm{C}$			A Drive unit has stopped

9.1.3 Safety elements

No.		Description SER Test	Cause	Elimination	Checking time	Reaction
E20	01		SER Test signal unsuccessful	SER short-circuit to the earth. Check the cabling of the sensor or the jumper.	Prior to closing	A
	02		SER too slow	SER reacts too slowly. Check the cabling of the sensor. Check for polarity reversal/test signal.		
E21	01	SES Test	SES Test signal unsuccessful	SES short-circuit to the earth. Check the cabling of the sensor or the jumper.	Prior to opening	A
	02		SES too slow	SES reacts too slowly. Check the cabling of the sensor. Check for polarity reversal/test signal.		
E22	01	EMY Test	EMY input on 24 V	Check the jumper EMY. Check the cabling EMY.	Permanent	H
	02		Malfunction EMY input			A

9.1.4 Feeding

No.		Description	Cause	Elimination	Checking time	Reaction
E30	01	30 V Error	30 V too low	Mains failure, overload motor. Check the feed-in. Replace the hardware.	Permanent	A
	02		30 V too high			
	03		Error upon switching-on			
E31	01	24 V General	Error upon switching-on	Overload, short-circuit 24 VDC onto terminals	Permanent	
	02		Over- resp. under-voltage	X101, X102 or X116 (Fire protection PCB/Relay PCB)		Restart after 10 s
E32	01	24 V Safety	Over- resp. under-voltage	Overload, short-circuit 24 VDC onto terminals X105 or X107		
E33	01	24 V E-Lock	Error: Over- resp. under-voltage	Overload, short-circuit 24 VDC onto terminal X108		
	02		Premonition: Over- resp. under-voltage			
E34	01	24 V CAN	Over- resp. under-voltage	Overload, short-circuit external power supply CAN		

9.1.5 System

No.		Description	Cause	Elimination	Checking time	Reaction
E50	$01 \ldots 99$	System error	Unexpected hard- ware or software event	Switch the drive mechanism off/on. Carry out a Factory Reset, carry out a Software Update, inform the manufacturer.	Permanent	W or H or F
E51	$01 \ldots 99$					
E52	$01 \ldots 99$					

9.1.6 Options

No.		Description	Cause	Elimination	Checking time	Reaction
E60	00	Relay PCB 0	Option PCB has been removed, its address changed or become defective	Check if the option is provided. If defective: Replace or remove from the configuration. Note: Deleting of error $60 \Rightarrow$ see chapter 13.6.1	Permanent	W
	10	Relay PCB 1			Permanent	W
	20	Relay PCB			Permanent	W
	30	Fire-protection PCB			Permanent	A

9.1.7 Closing sequence / Interlock function

No.	Description	Cause	Elimination	Checking time	Reaction	
E70	$x x$	CAN bus setting	CAN address xx existing twice	Correctly define the role of the closing sequence or the interlock function	Permanent	W
E71	01	CAN connection	No CAN connection	Plug in, check or replace the CAN cable. Check if all the CAN participants are switched on.	Permanent	W

9.2 Malfunction without error-no.

In some cases, it will be technically impossible to display an "irregular functioning" of the installation by a definite error number. An alleged error may by all means also be due to "correct" causes. For this reason the list shown hereafter has been established, which contains the probable or already encountered irregular functioning, their possible causes as well as the corrective action (error elimination) to be taken.

Malfunction	Analysis	Possible causes	Remedy
Drive unit fails to react: - No automatic opening. - No reaction on the control elements (side cover/D-Bedix).	- The program selection keys in the side cover are not lighted. - LED 5 V (green) on the control is not lighted.	Power supply voltage is missing.	- Switch on the main installation switch in the side cover. - Measure the mains supply voltage, check its cabling and eliminate any detected deficiencies. - Should the two above-mentioned measures not be successful, the control unit needs to be replaced.
Drive unit fails to open.	- LED SE (safety element, yellow) is lit. - Determine the active safety element via the diagnostic level.	One or more safety elements are active or incorrectly cabled.	- Remove the obstacle. - Check the cabling between the safety element and the control unit, and eliminate any detected deficiencies. - Replace the safety element.
	- LED SE (safety element, yellow) is not lighted. - LED OE (opening command, blue) reacts to the opening element. - Determine the opening element via the diagnostic level.	Depending on the enabled operating mode, the opening commands (inside/ outside, etc.) are ignored.	- Change the operating mode. - Correct the cabling of the opening elements.
	- LED SE (safety element, yellow) is not lighted. - LED OE (opening command, blue) is not lighted despite the active opening element.	The opening ocmmand is not evaluated.	- Check the cabling between the opening element and the control unit and eliminate any detected deficiencies. - Replace the opening element.
	The red LED in the side cover lights up.	Fire alarm/Mains failure.	Acknowledge the alarm (either by means of a connected button or by pressing and holding for a certain time a program key in the side cover).
Drive unit fails to close.	- LED SE (safety element, yellow) is lit.	One or more safety elements are active or incorrectly cabled.	- Remove the obstacle. - Check the cabling between the safety element and the control unit and eliminate any detected deficiencies. - Replace the safety element.
	- LED SE (safety element, yellow) is not lighted. - LED OE (opening command, blue) is lit.	An opening command is pending.	- Check the cabling between the opening element and the control unit and eliminate any detected deficiencies. - Replace the opening element.
	- Check the operating mode.	The operating mode OPEN is active.	- Change the operating mode.
The operating mode cannot be changed.	- The program selection keys in the side cover are not lighted.	The ribbon cable is not plugged in correctly, or not plugged in at all.	- Check the ribbon cable and eliminate any detected deficiencies.
	- The operating mode symbol on the display is underlined.	The operating mode is overridden via connection terminal X110.	- Change the operating mode by means of the external program selector switch. - Correct the cabling of the external program selector switch.
Prior to commissioning: During manual opening, the door leaf encounters an important resistance and closes at high speed.		The motor connector plug is not correctly connected.	- Plug the motor connector plug into the correct socket, in accordance with the application (pulling/pushing function) (see chapter 4.1; Default setting $=$ pushing function).

9.3 Software update via USB

A software update of the ETS 64-R control unit can be easily and rapidly achieved by means of an USB memory stick.

Note:
Not all the USB memory sticks can be used. We thus recommend a previous testing of their function together with the ETS 64-R.

9.3.1 Preparation

The USB stick must contain a folder FD20.
The file name of the application must specify FD20.
The name of the file extension must be gds.
\Rightarrow The stick shall only contain one single FD20 folder.
\Rightarrow There must be only one single file in the FD20 folder.

9.3.2 Procedure

1. Switch off the main installation switch on the ETS 64-R.
2. Plug the USB stick into the control unit \Rightarrow socket X118.
3. Switch on the main installations switch on the ETS 64-R.

4. The software download takes approx. 1 minute \Rightarrow Watch the LED display on the control unit.

9.3.3. LED display on the control

The display of the functions is ensured via three LEDs on the control PCB:

SOK	Green	USB-Loader started
OE	Blue	Activity in progress (delete/write memory)
SOK + OE	Green/Blue	Download completed \Rightarrow remove the stick
SE	Yellow	Error

9.3.4 Possible errors

- Incorrectly formatted USB stick
\Rightarrow this stick must be FAT or FAT 32 formatted (File Allocation Table from Microsoft).
- Several drives existing on the USB stick
\Rightarrow only one drive is legible.
- Invalid file
\Rightarrow Not encrypted, damaged, FD20 missing in the file name, gds missing in the file extension.

10 SHUT-DOWN

No particular measures need to be taken for de-commissioning the installation.
If the swing door drive mechanism will not be used during at least 1 month, it is recommended to pull out the mains plug.

For taking the installation back into operation, all you have to do is to plug in the mains cable and select the operating mode.

4

Attention:

If the installation is re-commissioned at low temperatures, it must be switched on $1 . . .2$ hours prior to the actual teach-in procedure (so that the operating temperature can be reached).

11 DISPOSAL OF THE INSTALLATION

An ecologically acceptable disposal of the installation is ensured if the different materials are separated and recycled. No particular measures are required for the protection of the environment. However, the relevant legal prescriptions applicable for the installation site have to be complied with!

12 SPARE PARTS

Article No.	Description	Remark
0548-116	Drive module	
0548-117	Drive module GSd	
0548-204	Switch support complete	
0548-107	Fixing set	
0548-358	Mounting plate	Option
0548-360	Mounting plate Mod.	Option
0548-141	Control unit complete (incl. fire protection PCB)	
0548-113	Encoder cable, reference switch cable, screws	
0548-215	Relay PCB	Option
0548-216	Radio PCB	Option
0635-142	D-BEDIX	Option
0548-133	Service D-BEDIX	for fitter
0548-400	Drive mechanism covering	Aluminium
0548-143	Covering accessories	Aluminium
0548-303	Drive mechanism covering	Stainless steel
0548-115	Covering accessories	Stainless steel
0548-177	Side cover complete (incl. main switch and program selector)	
0548-185	Side cover incl. LED	
0548-186	Side cover GSd incl. LED	
0548-460	Side cover extension	
0548-209	Flexible cable routing	Option
0548-163/01	Normal rods RS	
0548-164/01	Sliding rods RG (incl. sliding rail 650 mm)	
0548-175	Open stop piece integrated into the drive mechanism	Option
0549-115	Connection plate for wooden door leaf compl. (normal rods)	Option
0548-190/01	Axle extension RG/RS + 12 mm	incl. Tuflok screw
0548-191/01	Axle extension RG/RS + 20 mm	incl. Tuflok screw
0548-192/01	Axle extension RG/RS + 30 mm	incl. Tuflok screw
4099-315	Tuflok screw M8x 40 mm (without axle extension)	Option
4099-127	Tuflok screw M8x 60 mm (for axle extension $+12 /+20 \mathrm{~mm}$)	Option
4099-282	Tuflok screw M8x 70 mm (for axle extension +30 mm)	Option
0548-104	Normal rods	
0548-104/01	Normal rods KTL	
0548-134	Sliding rods (incl. sliding rail 620 mm)	
0548-105/01	Sliding rods KTL (incl. sliding rail 620 mm)	
0548-106	Open stop piece integrated into the drive mechanism	Option
0549-115	Connection plate for wooden door leaf compl. (normal rods)	Option
0548-114	Clamping piece standard	incl. Tuflok screw
0548-124	Clamping piece -13 mm	incl. Tuflok screw
0548-125	Clamping piece +20 mm	incl. Tuflok screw
0548-126	Clamping piece +50 mm	incl. Tuflok screw
4099-127	Tuflok screw M8x 60 mm (for clamping piece - 13 mm)	Option
4099-282	Tuflok screw M8 $\times 70 \mathrm{~mm}$ (for clamping piece standard)	Option
4099-286	Tuflok screw M8x90 mm (for clamping piece +20 mm)	Option
4099-290	Tuflok screw M8×120 mm (for clamping piece +50 mm)	Option
0548-222	Expansion element complete (2 pieces) for sliding rail	
0548-223	Glider for sliding rods	
0548-380	Covering caps (2 pieces) for sliding rail	
0548-398	Sliding bolt 14 mm for sliding rods	
0547-376	Sliding bolt 38 mm for sliding rods	

13 OPTIONS

13.1 D-BEDIX

The different operating modes can be directly enabled by means of the D-BEDIX. In addition, it provides easy programming of the most important door settings.
The operating modes, menu settings as well as possible errors are displayed in a clearly arranged synopsis.
The D-BEDIX is connected to the control unit ETS 64-R via a screened two-core connection cable (e.g. U72M or EIB-Y(St)Y, max. length 50 m).
Only one D-BEDIX can be connected per door installation.

13.1.1 Keys

C	C-key (Cancel) - Exit the menu - Invalidate entry.
(OR	OK-key - Confirm the selection - Confirm the entry.
$\Delta \Delta$	Arrow keys - Navigate within the menus - Short simultaneous actuation of both keys = acces to the menu level.

13.1.2 Symbols

Operating mode symbols

- Show the possible operating modes

(see chapter: Operating modes). | Selection frame (active and preselected operating mode) |
| :--- |
| - Shows what has been presently selected. |

13.1.3 Operating modes

With the D-BEDIX, the following operating modes can be selected by means of the corresponding symbols:
AUTOMATIC

Automatic operation. The installation can be locked. | NIGHT |
| :--- |
| The installation is locked ${ }^{1}$. As opening commands, only the key-operated impulse |
| switch is accepted. |
| The delayed switchover to the operating mode NIGHT can be activated by means |
| of parameter TdNigt. Function: If the program selector switch is changed to the |
| operating mode NIGHT from any random operating mode, the internal radar will still |
| remain active during the programmed time TdNigt (EXIT). |

${ }^{1}$ Provided that the locking mechanism (optional) is installed.
${ }^{2}$ Each operating mode can be locked (this is configurable).

13.1.4 Display of the door position

The following door positions are represented onthe D-BEDIX display:

<REF?>	Waits for reference switch
$<$?? $>$	Unknown
$><$	Closed
$>\# \#<$	Closed and locked
$\ll \quad \gg$	Opening
$<\quad>$	Open
$\gg \quad \ll$	Closing
$==$	Stopping

13.1.5 Menu level

Short and simultaneous actuation of both arrow keys (=access to the menu level).
Select the desired menu item bymeans of the arrow key.
Confirm by means of the OK key.

Display	Description
PARAMETER	Setting the motional parameters *
CONFIG	Setting the functionalities *
DOUBLE DOOR	Setting the closing sequence and interlock function *
DIAGNOSTICS	Diagnostic tool
ERROR ACTIVE	Active pending errors
ERROR HISTORY	Formerly active errors
REINIT	Carry out a re-initialization *
BLOCK/UNBLOC	Lock/unlock keys
TEACH	Initiate a teach-in procedure \Rightarrow make sure that the door leaf is completely closed.

* password protected
$\square \int$ Note:
The detailed settings are described in chapter 7.4.

13.1.6 Setting examples

Changing the operating mode

Select the desired symbol by means of the arrow key (symbol starts flashing).
Confirm with the OK key (frame/bar switch over).

Preselecting the operating mode

An overriding switch is active and determines the operating mode (only the selection frame is visible, the bar underlines the preselected operating mode). Now you can select the operating mode you want to be active upon cancellation of the overriding switch:
Select the desired symbol by means of the arrow key (symbol starts flashing).
Confirm with the OK key (bar switches over).

Enabling the keylock

Short simultaneous actuation of both arrow keys (= access to the menu level). By means of the arrow key, select BLOCK.
Confirm with the C-key and the right-hand arrow key.

Temporarily disabling the keylock (60 s)
Short simultaneous actuation of the C-key and the right-hand arrow key.

Disabling the keylock

Short simultaneous actuation of the C-key and the right-hand arrow key.
Short simultaneous actuation of the arrow keys (= access to the menu level). By means of the arrow key, select UNBLOC.
Confirm with the C-key and the right-hand arrow key.

Parameters (hold-open timeday)

Short simultaneous actuation of the arrow keys (= access to the menu level).
By means of the arrow key, select TOEx.
Confirm with the OK key.
By means of the arrow key, change the value.
Confirm with the OK key.

Teach

Completely close the door leaf.
Short simultaneous actuation of the arrow keys (= access to the menu level).
By means of the arrow key, select Teach.
Confirm with the OK key.

13.1.7 Error display

In the event of an error, the display shows (alternating with the door position status) the presently active error number (e.g. E20/01).
Error list: see chapter Troubleshooting.
This sequence will be repeated until the error has been eliminated.

13.2 KOMBI-D-BEDIX

In addition to the functions of the D-BEDIX, the KOMBI-D-BEDIX contains a key-operated switch (round or profile cylinder) with the following function:

Lockout of the KOMBI-D-BEDIX against unauthorized use.

Free
Locked

If this lockout is enabled, all the keys are shortly lit (as a confirmation of the lockout).

13.3 Open position stop piece integrated in the drive mechanism

Attention:

Standard + inverse application
It is imperative for the customer to install a door leaf stop piece!
This door leaf stop piece prevents the door leaf/drive mechanism from being damaged in the manual operating mode, in case of misuse or vandalism.
As an option, an open position stop piece can be integrated into the drive mechanism itself, but this stop piece does not offer this protective function.

0548-106
Stainless steel Normal rod/Sliding rod

0548-175
only Normal rod RS

13.4 Connection plate for wooden door leaf (normal rods)

The connection plate is mounted below the door connection angle of the normal rod assembly and screwed down by means of countersunk chipboard screws 5×30.

13.5 Continuous covering

For 2 leaves installations, the two drive mechanisms can be optically connected by inserting an intermediate covering piece.

Note:
A fire alarm is displayed by the red LED in the side cover.
This LED must be visible on one of the two drive mechanisms!

Set with drive mechanism covering $\mathbf{1 , 9} \mathbf{m}$ Alu	$0548-214$	or
Set with drive mechanism covering $\mathbf{1 , 2} \mathbf{~ m ~ A l u}$	$0548-220$	or
Set with drive mechanism covering 1,2 $\mathbf{~ m}$ Inox	$0548-252$	
$1 \quad$ Drive mechanism covering Alu natural anodised E6/EV1	$0548-304 / 01$	
	Drive mechanism covering Inox	$0548-468$
1	Intermediate profile Aluminium untreated	$0548-414 / 60$
1	Fixing set	$0548-214 / 90$

13.6 Optional PCBs

All the optional PCBs are plugged into the control unit via a universal connector. A maximum number of two optional PCBs can be combined.

\triangle
Attention:
All optional PCBs must only be plugged into/removed from the control unit after the dive unit has been disconnected from the power supply source!

13.6.1 Relay PCB

The relay PCB (blue) offers four outputs to be freely used by the customer.

Commissioning:

1. Addressing of the relay PCB by means of DIPSwitch:
DIP-Switch Addr0 or Addr1.
2. Switch-on the main installation swtich on
 the drive mechanism \Rightarrow the relay PCB is automatically identified.
The identified relay PCB is displayed as follows in the diagnostic menu:
RO Addro
R1 Addr1
FP Fire protection PCB
RP Radio PCB
$+\quad$ identified and ready for operation

- neither identified nor registered
e defective or error
x removed

3. Enabling of the desired function per relay: under Settings \Rightarrow Configuration RC0.1 up to RC0.4 (for Addr 0) and RC1.1 up to RC1.4 (for Addr 1).

Remove the relay PCB:

1. Switch-off the main installation swtich on the drive mechanism.
2. Remove the relay PCB.
3. Switch-on the main installation swtich on the drive mechanism.

Display:

$$
\begin{aligned}
& \mathrm{E} 60 / 00 \Rightarrow \text { Addr0 } \\
& \mathrm{E} 60 / 10 \Rightarrow \text { Addr1 }
\end{aligned}
$$

4. Select menu: Diagnostics R0-R1-... R0xR1-... RO-R1x...
 R0xR1x...
5. In the rest position, press in the joystick: Reset OK ? \Rightarrow The relay PCB is deleted from the configuration.

13.6.2 Radio PCB

A radio control PCB can be plugged into the control of the drive mechanism. Using a hand-held radio transmitter/radio transmitter/radio code lock, this PCB can be programmed with a code, upon which the drive mechanism can be controlled via this element.

In cases where several elements shall be used for controlling the same drive mechanism, all the transmitters need to be programmed with the same code (which is transmitted from the standard transmitter to all the additional transmitters).

On the other hand, several drive mechanisms can be simultaneously controlled by one single button.

2 leaves installations

If the radio PCB is installed on the Master drive mechanism, the radio command opens only the earlier door leaf (Master drive mechanism).
If the radio PCB is installed on the Slave drive mechanism, the radio command opens both door leaves (Master and Slave drive mechanism).

Teaching the element

1. Keep the button (A) on the radio control PCB depressed (at least during 3 seconds) until the red LED (B) flashes at regular intervals.
2. Maintain the desired button of the element depressed until the red LED (B) on the radio-control PCB lights up for about 2 seconds.
3. As soon as the red LED (B) is extinguished, this means that the code has been memorized in the radio control PCB.

13.7 LZR-FLATSCAN

In the event of swing doors, the FLATSCAN is mounted on the moving leaf, on the upper leaf corners (as close as possible to the secondary closing edge). The FLATSCAN can only be used in pairs! Master and Slave are connected among each other (see wiring diagram in the appendix). If a door radar is mounted directly above the FLATSCAN, it is compulsory to mount the weather canopy (for screening against radar microwaves).

14 APPENDIX

The following documents are added as an appendix to this instructions:

Electrical documentation

Drive mechanism for swing door ETS 73
Standard diagram no. E4-0141-713 e

- Overview
- Options
- Variants

(c) Gilgen Door Systens AE, CH-3150 Schwarzenturg

Option 1

Option 2
Option 3
Additional PCB 2

DIN left	DIN right
	Lintel mounting
Lintel mounting STANDARD pulling: INVERSED: Plug position $=X$ Plug position $=Y$	Lintel mounting
Wing mounting STANDARD pushing: INVERSED: Plug position $=Y$ Plug position $=X$	Wing mounting

1	2	3	4	5	6	7	8

Optional fire-protection PCB for ETS 64-R

ECO Schulte GmbH \& Co. KG Iserlohner Landstrasse 89
D-58706 Menden
Notes description

Diagram drawn: door is closed; mains off
© If element is missing, put a jumper.
(ִ) Total load +24 V : Max. 0.2 A

Note: Optionally all elements can be connected also on SLAVE (or in a mixed way on MASTER and on SLAVE).

Only for bi-paring installations

